Исследование свойств магнитных жидкостей методом светорассеяния

Это общая форма уравнения эллипса, описываемого концом вектора электрического поля. Большая и малая оси этого эллипса вдоль направлений  и  необязательно совпадают с осями координат 1 и 2, а образуют с ними угол . Чтобы определить угол , произведем стандартный поворот координатных осей 1 и 2 при помощи матрицы преобразования

,

которая дает компоненты поля вдоль направлений  и .  Используя (11), получаем          

Раскрывая тригонометрическое выражение , предыдущие формулы перепишем в виде

,

                                            ,                                        (13)

где

                                       ,   

                                    .             (14)

Исключая угол  из системы (13), после упрощений находим

                                                  (15)

Используя соотношение (14) и производя стандартные преобразования, полагаем

Следует подчеркнуть, что уравнение (15) не имеет смысла, если . Последнее равенство выполняется, когда , т.е. , где   - любое целое число, включая нуль. В случае  эллипс поляризации вырождается в прямую. Заметим, что при помощи указанного выше поворота осей уравнение эллипса (15) можно привести к нормальной форме

,

при которой центр эллипса находится в начале координат, а большая  и малая  полуоси располагаются соответственно вдоль направлений  и . Сравнивая нормальную форму с общим видом уравнения (15), отмечаем, что третий член в левой части (15) пропадает, т.е.

 Используя выражение (14), после группировки членов и упрощений получаем

,

или

                                                                                           (16)

Будем считать, что соотношение (16) справедливо даже и тогда, когда , т.е. . В этом случае  и имеется неопределенность относительно квадранта плоскости (1,2), в котором лежит главная ось эллипса. Эта неопределенность устраняется, если известна разность фаз .

Выведем теперь из (15) другие соотношения, используя определения большой и малой полуосей эллипса поляризации. При условии, что уравнение (16) остается справедливым, имеем

                          

т.е.

Из соотношений (14) следует, что числитель в правой части последнего уравнения обращается в . Используя указанное выше выражение для , получаем

                                                                                      (17)

Теперь можно показать аналитически, что для рассматриваемого эллипса поляризации длина диагонали D любого описанного около него прямоугольника, т.е. расстояние 2О/R на рис 2, б, является инвариантной

для всех углов . Отсюда следует, что для всех  имеем

                                                                                              (18)

Поэтому, сравнивая (18) с (17), получаем

                                                                                               (19)

Прежде чем получить выражения для параметров Стокса, необходимо вывести еще несколько дополнительных соотношений. Определим угол  следующим образом:

,       .

Используя обычные свойства алгебраических отношений и некоторые тригонометрические тождества, получим

                                 ,                                  (20)

Аналогичным образом введем другой вспомогательный угол :

                                      ,                                                  (21)

После подстановки (21) в (16), имеем

                                                                                            (22)

Наконец, разделив (19) на (18), получаем

                                                                                    (23)

Из (20), (21) и (23) находим

                                                                                         (24) 

Получим теперь соотношения между четырьмя параметрами Стокса I, Q, U и V для полностью поляризованного потока излучения и такими параметрами поляризации как углы  и . Для этого определим параметры Стокса следующим образом:

                                                                                              (25)

Соответствующий переходный множитель между потоками энергии и квадратами амплитуд электрического поля ради простоты в тождествах (25) опущен. Возводя в квадрат все четыре параметра (25) и затем складывая их, замечаем, что

                                                                                            (26)

Это равенство справедливо только в том случае, когда рассматриваемый поток излучения полностью поляризован.

Далее, из (16), (20) и (23) имеем

,

.

При подстановке этих выражений в (26) получаем

или

Таким образом, можно записать выражения для четырех параметров Стокса в двух удобных формах, полностью описывающих состояние поляризации электромагнитного излучения. Именно,

                                    

Остается теперь рассмотреть вопрос о направлении вращения конца электрического вектора, описывающего эллипс поляризации. Из выражений (11) для компонент  и  следует, что если , то конец вектора результирующего электрического поля  описывает эллипс в направлении движения часовой стрелки в фиксированной плоскости, проходящей через точку О/. На эллипсе, изображенной на рис. 2,б, это направлении указано стрелками. Для данного случая термин правосторонняя поляризация обосновывается тем, что в фиксированный каждый момент времени концы электрических векторов непрерывного цуга волн описывают вполне определенную спираль, или винтовую линию, в направлении движения часовой стрелки. Поляризация будет левосторонней (направление движения против часовой стрелки в плоскости рис. 2,б), .

Из выражений (24) и (27г) следует, что знак параметра Стокса М определяет направление вращения эллипса поляризации, поскольку по определению . Поляризация будет всегда правосторонней в указанном выше смысле, когда , или , а . Однако поскольку угол  определяется так, что величина  всегда равна отношению малой оси эллипса к его большой оси, то окончательные условия, определяющие направление поляризации будут следующими:

,      - правосторонняя поляризация,

   - левосторонняя поляризация.

Следует сказать еще о двух свойствах параметров Стокса. Фактически степень применимости параметров Стокса целиком зависит от возможности измерять при помощи существующих оптических приборов сумму и разность интенсивностей в двух любых фиксированных и взаимно перпендикулярных направлениях 1 и 2. Кроме того, необходимо измерить еще разность фаз между этими интенсивностями за интервал времени, который обычно намного превышает период колебаний электрического поля. Ясно, что это обстоятельство вносит в рассмотрение некоторую долю произвола, зависящую, например, от ограничений, накладываемых величиной постоянных времени приемных измерительных устройств. Аналогичным образом параметры рассеяния естественного, или неполяризованного, света можно определить в зависимости от того, возможно ли измерить конечные разности интенсивностей Q и фаз  для любой фиксированной ориентации осей 1 и 2. В этом случае для параметров Стокса выполняется следующее соотношение:

                                                                                                 (28)

Приведенный выше вывод параметров Стокса справедлив  для строго монохроматического излучения фиксированной угловой частоты , связанные гармонические колебания (12). Однако, в этом случае всегда имеется некоторая доля чисто поляризованного излучения, соответствующая одному из видов поляризации. Поэтому в действительности соотношение (28) никогда не выполняется. Единственное условие, при котором может наблюдаться неполяризованное, но в то же время строго монохроматическое излучение, выполняется при сложении двух независимых и противоположно поляризованных потоков. Однако трудно придумать какую-либо методику для полного достижения этого условия в эксперименте.

Поскольку строго монохроматическое излучение редко встречается в природе, поляризация никогда не бывает полной. В этом случае говорят о частичной поляризации излучения. Отсюда следует второе свойство параметров Стокса,  на которое вначале указал сам Стокс, а затем рассмотрел Чандрасекар  [ ]. Согласно этому свойству любой поток квазимонохроматического излучения можно представить в виде суммы неполяризованной компоненты  типа (28) и полностью поляризованной компоненты , соответствующей одному из видов поляризации, т.е.

                                                                       (29)

Степень частичной поляризации  однозначно определяется отношением

                                                          (30)

Вектор-параметр Стокса для частично поляризованного потока излучения можно разделить на две компоненты, полагая

                                    .                                 (31)

В заключение данного параграфа следует отметить, что основное внимание уделено получению выражений для параметров Стокса в случае идеализированного электромагнитного излучения фиксированной частоты. В частности, рассмотрены два наиболее важных свойства, вытекающие из определения параметров Стокса: 1) аддитивность этих параметров для двух независимых потоков света, совпадающих по направлению распространения; 2) возможность представлять произвольное состояние частичной поляризации (подобной той, какая, вероятнее всего встречается в реальных условиях) через параметры Стокса двух идеализированных компонент потока, соответствующих полностью неполяризованному и полностью поляризованному состояниям излучения. Оба эти свойства играют важную роль при определении параметров Стокса для полидисперсных систем.

Матрица Стокса для рассеяния МИ

Выразим теперь элементы матрицы (10) через параметры теории Ми. Конкретный вид этой матрицы впервые был получен в работе Перрена [ ], в которой использованы оптические свойства идеальных рассеивающих частиц Ми. Этот вывод основан на том, что преобразование вектор-параметра Стокса для обычного однородного и линейного оптического процесса можно выразить при помощи квадратной матрицы (4Х4) с 16 независимыми коэффициентами. Если такой процесс происходит в изотропной среде, то при любой фиксированной частоте  эти коэффициенты являются только функциями угла  между падающим и рассеянным излучениями. В этом случае число независимых коэффициентов последовательно уменьшается до: 10 – при учете принципа обратимости (отсутствует флуоресценция или раман-эффект), 8 – при учете зеркальной симметрии в среде, 4 – если в добавление к указанным выше свойствам учитывать сферическую симметрию. В последнем случае получим форму матрицы преобразования, представленную формулой (10). Согласно [ ], будем предполагать, что образование падающего потока происходит только при чистом рассеянии однородной сферической частицей, образованной из оптически неактивного  вещества с комплексным показателем преломления, отличным от показателя преломления окружающей среды. Кроме того подразумевается, что рассеивающие частицы обладают всеми свойствами симметрии, о которых говорилось выше. При этих допущениях любая плоскость рассеяния является также плоскостью симметрии. Поэтому ясно, что для описания полного преобразования вектор-параметра Стокса падающего потока достаточно двух комплексных величин характеризующих амплитуды поля в направлениях, перпендикулярном и параллельном плоскости рассеяния. Этими величинами являются непосредственно амплитудные функции Ми. В [ ] показано, что элементы матрицы (10) имеют вид:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать