История физики

Движение в философском смысле — это всякое изменение материи, всякий происходящий в природе процесс: химическая реакция, элек­тромагнитное излучение, рост дерева, мышление.

«Движение, рассматриваемое в самом общем смысле слова, т. е. понимаемое как форма бытия материи, как внутренне присущий материи атрибут, обнимает собою все происходящие во вселенной изменения и процессы, начиная от простого перемещения и кончая мышлением» (Энгельс).

Механика изучает простейшую форму движения, а именно пере­мещение тел или частиц в пространстве (механическое движение).

Некоторые физические открытия XIX в. дали возможность как бы «свести» целый ряд явлений, казавшихся совершенно разнородными, к механическому движению. Так, например, тепловое состояние тела было как будто «сведено» к механическому движению его молекул. На этой почве укрепилось предположение, что все вообще явления природы в конечном счёте представляют собой только механическое движение; был выдвинут лозунг — свести всё естествознание к меха­нике. Такое воззрение носит название механистического мировоззрения.

Это воззрение ошибочно. Сущность высоких форм движения в дей­ствительности несводима к механическому движению. Каждая форма движения имеет особые черты, составляющие её своеобразие (её каче­ство). Даже тепловое движение, хотя оно и слагается из механиче­ского движения молекул, не исчерпывается им; при тепловом движении перемещения молекул в среднем подчинены особым законам стати­стики, которые не вытекают из законов механики.

Законы механики важны для понимания низших форм движения, но они недостаточны для понимания высших (более сложных) форм. Уже в молекулярных движениях обнаруживаются явления, которые не могут быть объяснены и предсказаны посредством одних только ньютоновых законов. Именно эти явления, не поддающиеся исчер­пывающему объяснению, если исходить только из перемещений, выступают на первый план, когда мы обращаемся к изучению внутри* атомных движений, а также и тех движений, которые лежат в основе электрических и магнитных процессов. В столь высоких формах движения, как биологические процессы и мышление, перемещения играют, несомненно, второстепенную роль в сравнении с другими свое­образными сторонами этих процессов, несводимыми к механическому движению. Природа сложнее, чем думают механисты.

Физика изучает простейшие формы движения: 1) механическое движение (поступательное, вращательное, колебательное, волновое) и связанные с механическим движением проявления всемирного тяго­тения; 2) молекулярно-тепловое движение и процессы, обусловлен­ные межмолекулярными взаимодействиями (свойства и изменения агре­гатных состояний, диффузию и растворение, передачу тепла и т. п.); 3) электрические и электромагнитные процессы и 4) внутриатом­ное движение и свойства тел, определяемые строением атомов (в част­ности, оптические свойства тел, происхождение важнейших химиче­ских особенностей веществ, космические и лабораторные процессы преобразования элементов и т. п., вплоть до освобождения внутри­ядерной энергии).

При научном исследовании физических явлений в подавляющем большинстве случаев мы встречаемся с теснейшей взаимосвязью, со взаимопроникновением и преобразованием всех указанных форм движения материи.

В настоящее время очень нелегко провести границу между физи­кой и примыкающими к ней науками, особенно химией.

В физике изучаются как движения тел, составленных из огром­ного числа молекул, так и более тонкие формы движения материи — движение молекул, атомов, их ядер, электронов. Иногда раздел физики, имеющий дело с телами, которые содержат огромное число атомов или молекул, называют макрофизикой; раздел физики, в котором изучаются движения и взаимодействия отдельных мельчайших частиц, называется микрофизикой.

Химия также имеет дело с атомами и молекулами, но изучает качественные особенности вещества, к которым приводят количествен­ные изменения числа электронов в атоме, числа и рода атомов в мо­лекулах. В пограничной области между физикой и химией развилось несколько дисциплин: физическая химия, коллоидная химия и др.

К физике примыкают науки, изучающие конкретные состояния материи, окружающей нас на Земле (геофизика, метеорология, гидро­логия), в небесных телах (астрофизика), в живых организмах (био­физика).

Глубокая внутренняя связь между физикой, химией, астрономией, геологией, биологией обеспечивается единством, общностью строения материи во всех её конкретных проявлениях. Самые отдалённые звёзды, Солнце, земная кора, живые организмы построены из одних и тех же химических элементов. Молекулярные силы, химические междуатомные силы, внутриатомные силы в основном имеют электрическую природу. Атомы всех химических элементов построены в известной мере однотипно: из положительно заряженных массивных атомных ядер и легчайших из известных нам элементарных частиц — элек­тронов, которые в своём стремительном движении по замкнутым орбитам вокруг ядра образуют как бы электронное облако, охваты­вающее ядро. Ядра всех атомов построены из протонов — положи­тельно заряженных ядер атомов водорода, масса которых в 1836 раз превышает массу электрона, и почти таких же по массе, но элек­трически нейтральных частиц — нейтронов.

Кроме этих основных, стабильных частиц, в космических лучах обнаружилось существование малоустойчивых частиц: положительных электронов — позитронов, имеющих такую же массу, как и отри­цательные электроны, и мезонов — частиц трёх родов по заряду — отрицательных, положительных и нейтральных — и нескольких разно­видностей по величине массы: мезонов, имеющих массу примерно в 210 раз большую, чем масса электрона, и мезонов, масса которых примерно в 280 раз превышает массу электрона.

В пространстве, где находятся электрические заряды, происходят скрытые, неизвестные нам движения материи, которые проявляются в действии электрических сил на пробный заряд, внесённый в любое место этого пространства, и в действии магнитных сил на движу­щийся заряд; эту особую форму движущейся материи (отличающуюся от частиц, но порождающую взаимодействие электрически заряженных ча­стиц и намагниченных тел) называют электрическим и магнитным полем.

В отличие от электричества не существует свободного, несвязан­ного полярного магнетизма—магнитные полюсы не могут быть разъ­единены. Электрическая и магнитная энергия непрерывно распределены в электрическом и магнитном поле. Но установлено в качестве одного из главных законов физики (который разъяснён в т. III), что где имеется энергия, там имеется в пропорциональном количестве и масса. Таким образом, электрическое и магнитное поля имеют материаль­ную основу — обладают массой и энергией.

Можно сказать, что современной физике материя известна в двух основных формах, которые, однако, при всей их противоположности неразрывно связаны: в форме частиц вещества и в форме полей. Электроны представляют собой совокупность этих двух форм мате­рии: электрон — частица и в то же время он — центр порождённого им электромагнитного поля, которое является носителем его энергии и массы.

Нейтроны (электрически нейтральные частицы, имеющие массу водородного ядра) являют собой наиболее характерный пример кор­пускулярной формы материи. Какое-то поле присуще и нейтрону, но природа и строение этого поля пока остаются невыясненными.

Физике хорошо известна и другая крайность — электромагнитная форма материи. Это — свет, тепловое излучение и вообще квантовое излучение, которое представляет собой волновое электромагнитное поле, оторвавшееся от породивших его зарядов и распространяю­щееся с предельной скоростью движения — со скоростью света. Отрыв электромагнитного поля от породивших его зарядов происхо­дит по квантовому закону, согласно которому энергия излучается не иначе, как определёнными порциями, в количествах, равных или не­сколько раз повторяющих величину e=hv, где h — некоторая уни­версальная постоянная и v — частота колебаний в излучённом электро­магнитном поле. Эти порции излучения называют фотонами.

Каждой доле энергии соответствует пропорциональная ей масса: атом, излучающий фотон, вместе с энергией теряет определённую массу; эту массу уносит фотон. До излучения это была масса неко­торой части электромагнитного поля зарядов, а после излучения она же стала массой фотонов.

Встречающиеся в некоторых книгах рассуждения о превращении массы в энергию представляют собой небрежность, неточность изло­жения или же преднамеренное идеалистическое извращение физики. Никакого превращения массы в энергию никогда не происходит.

В смысле целостности и наличия массы фотоны аналогичны ча­стицам, и в определённых случаях они и проявляются как частицы, но в то же время фотоны, не имея структурно обособленных центров сосредоточения массы и энергии, представляют собой полную противо­положность частицам; фотон — это электромагнитное поле, оторвавшееся от зарядов, но сохраняющее свою целостность, несмотря на то, что оно более или менее раскинуто в пространстве как группа, пакет волн.

Вместо двух основных форм материи (частицы и поля) при более детальной классификации видов материи каждый род частиц и их устойчивых сочетаний можно рассматривать как особый вид материи. Таким образом, в физике различают материю:

в виде фотонов разной длины волны;

в виде элементарных частиц, а именно: электронов (электрон­ного облака в атоме, электронного газа в металле, электронного тока, электронных лучей) и ядерных частиц (позитронов, протонов, ней­тронов, мезонов и простейших атомных ядер, обнаруживающих себя при радиоактивности и в ядерных реакциях);

в виде атомов, ионов, молекул и их сочетаний в химические вещества.

Приведённые классификации физических форм движения мате­рии и видов материи, изучаемых физикой, соответствуют совре­менной ступени развития физики. По мере углубления наших знаний о природе и строении материи подобного рода классификации посто­янно подвергаются пересмотру и усовершенствованию.

При развитии физики происходит смена физических теорий, уточ­няются и совершенствуются законы и понятия физики. При развитии физики происходит смена и предмета физики и методов физиче­ского исследования мира.

Вначале физика представляла собой науку о природе, т. е. пред­мет её был, казалось бы, несоизмеримо шире современного, когда от физики отделились и обособились многочисленные естественные науки: химия, биология, геология и т. д. Однако следует учесть, что физика, понимавшаяся в древности как естествознание, в действительности имела предметом изучения немногочисленные явления, которые сде­лались известны человечеству из узкого круга наблюдений, произ­ведённых невооружённым глазом немногими людьми, интересовавши­мися наукой.

Уже в средние века, когда от физики отделялись нарождавшаяся химия и начатки некоторых других естественных наук, предмет изу­чения физики не только не сузился, но, напротив, расширился (что и вызвало отделение упомянутых наук). Действительно, к этому вре­мени весьма расширились познания людей о движении и равновесии тел, о плавании твёрдых тел в жидкостях, о тепловых явлениях, кипении, растворении, кристаллизации, о явлениях погоды и т. п. Это расши­рение области явлений, изучаемых физикой, было вызвано прак­тическими потребностями людей, в связи с распространением ремёсел и торговли, и произошло благодаря расширению и некоторому усо­вершенствованию наблюдений и простейших экспериментов.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать