История изучения капиллярных и поверхностных сил

    (44)

 

где

         — среднее значение составляющей по оси x дипольного момента мо­лекул i‑го компо­нента в фазе a;

         — среднее значение квадрата той же ве­личины;

          и  — соответствующие сродства; суммирова­ние по x и a означает сумми­рование по всем составляющим дипольного момента и по всем фазам и тонким эле­ментарным слоям внутри поверх­ностного слоя, рассматриваемым как однородные области.

Следует отметить, что в основе вывода уравнения (44) лежит весьма ус­ловное предположение о независимости транс­ляционных и вращательных со­ставляющих ад­сорбционно-диф­фузионного процесса.

Развитие новых направлений в

 термодинамике поверхностных явлений

Термодинамика тонких пленок


Гиббс в теории капиллярности ограничился рассмотрением только тол­стых пле­нок, в которых можно пренебречь взаимо­влиянием поверхностных слоев на противопо­ложных сторонах пленки. Тонкая пленка принципиально от­личается от толстой тем что ее поверхностные слои нельзя рассматривать неза­висимо друг от друга. Фактически в тонкой пленке уже нельзя выделить объем­ную фазу и окружающие ее поверхностные слои, а необходимо рассматривать пленку в целом. Важной характеристикой, отличаю­щей тонкую пленку от тол­стой, является расклинивающее давление; в опытах оно про­является в том, что при переходе от толстой к тонкой пленке требуется изменение внешнего давле­ния. Понятие расклинивающего дав­ления было введено Дерягиным [42], кото­рому принадлежат и первые измерения этой величины.

Существует несколько эквивалентных определений раскли­нивающего дав­ления плоской тонкой пленки. Прежде всего расклинивающее давление П можно определить как разность между значениями внешнего давления Pa на тонкую и толстую пленку

                                                 (45)

где h — толщина тонкой пленки.

Если тонкая пленка образовалась из фазы g и продолжает находиться с ней в рав­новесии (например, при прилипании пузырька к твердой поверхности: фаза a — газ, фаза g — жид­кость), то расклинивающее давление можно определить как:

                                              (46)

Наконец, поскольку для плоской пленки внешнее давление всегда равно нормаль­ной составляющей тензора давления внутри пленки, можно дать опре­деление

                                                    (47)

и сформулировать его следующим образом:

расклинивающее давление есть разность между нормальным давлением внутри пленки (или внешним давлением) и давле­нием в объемной фазе той же природы при тех же значениях температуры и химических потенциалов, что и в пленке.

Определение (46) впервые использовали в эксперименталь­ных исследова­ниях рас­клинивающего давления [42 – 45], а оп­ределение (47) — для расчетов [46].

Как величина термодинамическая, расклинивающее давле­ние может быть связано с другими термодинамическими пара­метрами, и относящиеся к этой об­ласти соотноше­ния образуют термодинамику тонких пленок как особый раздел теории ка­пиллярности. Разработка этого раздела содержится в целом ряде работ (см., например, [47 – 57]). По­следовательное изло­жение термодинамики тонких пленок дано в монографии [25, стр. 259 – 310]. Термодинамика тонких пленок нашла важное приложение в теориях элек­трокапиллярности, адсорб­ции и хро­матографии (ссылки на конкретные работы можно найти в [14]).

Здесь мы продемонстрируем в качестве примера подход к термодинамике тонких пленок, связанный с введением двух разделяющих поверхностей. Пред­ставим, что пленка образо­валась путем утоньшения слоя фазы g между фазами a и b . Тогда, вы­брав положение двух разделяющих поверхностей и взяв избытки со стороны фаз a и b , мы придем к уравнению (32) для слоя конечной тол­щины, которое в данном случае имеет вид

gdA                             (48)

где

         g — натяжение пленки;

         h — расстояние между разделяющими поверхностями.

Теперь мы сделаем еще один шаг [66]: возьмем избыток по от­ношению к фазе g, то есть вычтем из (48) уравнение

                                          (49)

Используя определение (53), получаем

gdA                                   (50)

где ,  и  — совместные для обеих поверх­ностей избытки энергии, энтропии и массы i-го компонента.

Уравнение (50) справедливо при любом положении разде­ляющих поверх­ностей. Оно играет роль основного фундамен­тального уравнения тонкой пленки, из которого могут быть получены многие другие термодинамические соотношения. В частности, из (50) получаем выражение

                                         (51)

которое также может рассматриваться как определение раскли­нивающего дав­ления. Из (50) следует еще два фундаментальных уравнения:

gA                         (52)

                                 (53)

Уравнение (53) является аналогом уравнения адсорбции Гиббса (в терми­нах абсо­лютной адсорбции). Как и уравнение адсорбции Гиббса, оно не является самостоятель­ным термоди­намическим соотношением и для получения каких-либо физи­ческих зави­симостей должно рассматриваться совместно с фун­дамен­тальными уравнениями для объемных фаз.

Отметим, что приведенные определения расклинивающего давления отно­сятся только к плоской пленке. При переходе к случаю искривленной пленки возникают сле­дующие ослож­нения: определения (45) – (47) перестают быть эк­вивалентными; каждое из этих определений утрачивает свою однозначность. Так, если пользоваться определе­ниями (45) и (46), то для искривленной пленки будут существовать два расклиниваю­щих давления, поскольку давления Рa и Рb по обеим сторонам пленки будут различ­ными. Определением (47) воспользо­ваться еще труднее, так как в случае искривленной пленки вели­чина Рn является функцией пространственных координат.

Для описания дальнодействующих поверхностных сил в искривленных пленках можно использовать более фундаментальное понятие работы смачива­ния, введенное в [58]. Для плоских пленок работа смачивания просто выража­ется, если известна изо­терма расклинивающего давления (т.е. зависимость P(h) при данной температуре). Для искривленных же пленок необходимо делать ка­кие-то другие предположения о виде зависимости работы смачивания от тол­щины пленки.

Таким образом, даже задача адекватного описания дальнодействующих поверхно­стных сил на сегодняшний день остается нерешенной.

В целом можно отметить, что термодинамический подход Гиббса к описа­нию ка­пиллярности оказался очень плодотворным. По сей день теория Гиббса остается весьма полезной как в чисто теоретических исследованиях, так и в прикладных задачах. Значи­тельные успехи достигнуты также в термоди­намике адсорбции, смачивания, нуклеации, электродных про­цессов и в других областях.

Заключение


Как видно из приведенного исторического обзора, капиллярные явления изуча­ются уже почти триста лет. За это время довольно сильно изменились спо­собы описа­ния капиллярных и поверхностных сил. Однако, интересно отметить, что практически с самых первых работ по теории капиллярных явлений, люди совершенно правильно от­носили их к макроскопическим проявлениям сил, дей­ствующих между частицами в веществе. С развитием представлений об этих си­лах менялось и понимание их роли в тех или капиллярных явлениях.

Первые оценки радиуса действия межмолекулярных сил были грубыми и сильно завышенными. Соответственно, первые теории капиллярности были грубыми механи­стическими теориями среднего поля.

Теория Гиббса дала совершенно новый инструмент исследования поверх­ностных явлений. С использованием мощного и универсального аппарата тер­модинамики уда­лось дать более строгие определения понятиям границы раздела фаз, толщины пленки и т.д. Кроме того, формула Лапласа для разности давле­ний в фазах вблизи искривленной поверхности их раздела была получена в тео­рии Гиббса без всяких дополнительных предположений о радиусе действия межмолекулярных сил. Подход, развитый Гиббсом, и сегодня не теряет своей актуальности в силу своей универсальности и удивительной широты охвата яв­лений.

В настоящее время исследования в области капиллярных и поверхностных сил продолжаются, что обусловлено как их важностью в различных областях науки, так и широким спектром практических приложений.


Литература.

 

1.    [D&L2] © Hauksbee F. Physico-Mechanical Experiments, London, 1709, pp. 139–169; and Phil. Trans., 1711 and 1712.

2.    Maxwell J.C. Capillary Action. The Encyclopaedia Britannica, 11th edition, Cambrige: at the University Press, 1910, vol. 5, p. 256.

3.    © Jurin J. Phil. Trans., 1718, p. 739, and 1719, p. 1083.

4.    © Clairault A.C. Thйorie de la figure de la terre, Paris, 1808, pp. 105, 128.

5.    © von Segner J.A. Comment. Soc. Reg. Gцtting. i. (1751), p. 301.

6.    © Leslie J. Phil. Mag., 1802, vol. xiv p. 193.

7.    © Young T. Cohesion of Fluids, Phil. Trans., 1805, p. 65.

8.    ¨ Laplace P.S. Traitй de Mйcanique Cйleste; Supplйment au dixiйme livre, Sur l’Action. Capillaire (1807); in: Oeuvres complйtes de Laplace, v. 4. Gauthiers-Villars, Paris, 1880, p. 349, 419.

9.    Роулинсон Дж., Уидом Б. Молекулярная теория капиллярности. М.: Мир, 1986.

10.¨ Lord Rayleigh, Phil. Mag. 30, 285, 456 (1890); Scentific Papers, v. 3. Cambrige University Press, 1902, p. 397.

11.¨ Duprй A. Thйorie mйcanique de la Chaleur. Gauthier-Villars, Paris, 1869, p. 152.

12.§ Gibbs J.W. Trans. Conn. Acad., 1878, v.3, p. 343; Гиббс Дж. В. Термодина­мические работы. М. – Л., Гостехиздат, 1950.

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать