А вот установление математической зависимости периода относительной устойчивости орбит тел Солнечной системы не под силу даже современным ЭВМ, т.к. в любой момент времени изменяются начальные условия этого процесса (например, появляются несколько комет из облака Оорта). В облаке 150 млрд. комет, которые образовались вместе с планетами и до сих пор идет процесс образования новых комет. Потребуются еще годы исследований, чтобы понять хаотическое движение тел Солнечной системы и рассчитать зависимость периода повторения квазиустойчивых состояний и катаклизмов.
В продолжении моей работы о причинах природных катаклизмов и рассмотрены работа Пуанкаре «Новые методы небесной механики», работы Колмогорова, Арнольда и Мозера (КАМ), результаты исследования космических зондов «Вояджер», «Пионер»(США), проекта «ВеГа» (Венера – комета Галлея)(Россия) и результаты обработки полученных данных с помощью суперкомпьютера NASA, который рассчитал орбиты планет на 900 млн. лет вперед, но без учета резонанса, что и приведет к 100% ошибке через 100 млн. лет.
НЕВОЗМОЖНОСТЬ ПРИМЕНЕНИЯ ЗАКОНОВ
НЬЮТОНА ПРИ РЕШЕНИИ ЗАДАЧИ ВЗАИМОДЕЙСТВИЯ ТЕЛ СОЛНЕЧНОЙ СИСТЕМЫ.
Небесная механика изучает движение тел Солнечной системы под воздействием сил тяготения. Законы Ньютона и закон всемирного тяготения позволяют прекрасно смоделировать движение этих тел (правда, для близких к Солнцу планет необходимо учитывать поправки, связанные с законами общей теории относительности, - современной теории тяготения; для комет важны также поправки на негравитационные силы). Второй закон Ньютона устанавливает соотношение между ускорениями тел и их координатами. Поведение системы задается начальными условиями, т.е. значениями ее N координат и N скоростей в определенный момент времени. Число N называется числом степеней свободы системы. Например, движение маятника – это движение системы с одной степенью свободы, т.к. его можно описать задав угол, который образует нить маятника с вертикальной осью и угловую скорость.
Законы Ньютона не позволяют непосредственно решить задачу N тел, т.е. найти формулу, определяющую их положения и скорости в любой момент времени по заданным координатам и скоростям в начальный момент времени. Точно так же нам неизвестно, как изменяются траектории тел при небольшом изменении начальных условий. Ведь точные начальные условия задает только математик – он сам и задает их при решении задачи. Астроном лишь приблизительно определяет положения и скорости тел Солнечной системы, используя целый арсенал достаточно несовершенных инструментов (телескопы, космические зонды, лазеры, радиолокаторы, кинокамеры и т.д.). Эта неустранимая неточность измерений заставляет астронома изучать траектории планет, заведомо задавая начальные условия с некоторой ошибкой. Сравнить результаты с точным расчетом можно в одном-единственном случае – в задаче двух тел, или задаче Кеплера. Только в этом случае с помощью законов Ньютона можно получить общую формулу, определяющую траекторию планеты (или любого другого объекта), обращающейся вокруг Солнца. Траектории в задаче двух тел могут быть эллипсами, гиперболами или параболами. Если наблюдаемые траектории отличаются хоть в малой степени от кеплеровских, то дальнейший расчет поведения тел, движущихся по ним, становится очень трудной задачей.
РЕШЕНИЕ ЗАДАЧ ВЗАИМОДЕЙСТВИЙ ТЕЛ
СОЛНЕЧНОЙ СИСТЕМЫ МЕТОДОМ ТЕОРИИ ВОЗМУЩЕНИЯ.
Перед рассмотрением метода теории возмущения следует вспомнить некоторые характеристики движения планет. Прежде всего, в этом случае сохраняется полная энергия планеты. Системы такого типа называются консервативными. Энергия консервативной системы является функцией координат и импульсов тел, входящих в ее состав. Для консервативных систем можно записать уравнения движения, эквивалентные уравнениям Ньютона, - уравнения Гамильтона, в которых в качестве переменных используются координаты и импульсы, а не координаты и скорости.
При выборе соответствующих переменных, называемых каноническими, эти уравнения принимают очень симметричную форму относительно координат и импульсов тел. Это не помогает их решить, но облегчает изучение общих свойств решений. В случае интегрируемых систем уравнений можно найти такую новую систему независимых переменных (нормальные координаты), в которой уравнения Гамильтона становятся очень простыми. При этом движение сводится к сложению периодических круговых движений, характеризуемых собственными частотами. Записанное в таких переменных движение называется квазипериодическим. Фазовые траектории интегрируемой системы заполняют поверхность тора. В результате анализа подобных систем получают формулу, позволяющую рассчитать положение тел в любой момент времени в прошлом или будущем, исходя из заданных начальных условий.
К сожалению, большинство динамических систем относится к классу неинтегрируемых ( по существу, интегрируемыми являются только системы с одной степенью свободы – вроде маятника), поэтому не удается найти преобразование от обычных координат к нормальным и упростить задачу. Однако в небесной механике системы во многих случаях близки к интегрируемым. Так, если пренебречь взаимодействием между планетами, то система планет, движущихся в поле Солнца, становится, с точки зрения математики, интегрируемой, так как движение каждой планеты не зависит от движения другой и может быть точно определено из решения задачи Кеплера.
Массы планет очень малы по сравнению с массой Солнца, поэтому их гравитационное взаимодействие друг с другом много меньше их гравитационного взаимодействия с Солнцем. Этот малый параметр пропорционален отношению массы планеты к массе Солнца.
Астрономы и математики, начиная с Лагранжа и Лапласа (XVIII в.), разработали метод, позволяющий найти приближенное решение уравнений, содержащих малый параметр. Это метод теории возмущений, когда решение задачи ищется в виде ряда по степеням малого параметра.
Суть заключается в том, что сначала отбрасываются все слагаемые, связанные с отклонением системы от интегрируемой. Тогда можно найти точное решение получившейся задачи, как говорят, в нулевом приближении. Затем учитывается главная поправка, пропорциональная первой степени малого параметра e (первый порядок теории возмущений), затем следующая поправка, пропорциональная e2 (второй порядок теории возмущений) и т.д. На практике расчеты очень быстро становятся настолько сложными, что остается только ограничиться первыми поправками, аргументируя отбрасывание всех последующих тем, что их вклад пропорционален высокой степени малого параметра e <<1. Решения, получаемые таким способом, также являются квазипериодическими функциями.
МЕТОД ПУАНКАРЕ И ТЕОРИЯ КАМ.
Незадолго до Французской революции Лаплас и, независимо, Лагранж, ограничиваясь вычислениями в первом порядке теории возмущений, показали, что движение планет в Солнечной системе является квазипериодическим. Это указывает на ее стабильность: длины полуосей, эксетриситет и угол наклона к плоскости эклиптики планет испытывают только малые отклонения от средних значений. Заменой переменных можно свести движение планеты к квазипериодическому движению на торе. Чтобы на долгое время вперед узнать, как будет эволюционировать Солнечная система, необходимо знать частоты квазипериодических движений. Уточнив расчеты Лагранжа и Лапласа, Леверье в 1856 г. учел отброшенные ими поправки и получил совершенно другие значения основных частот движений планет. Леверье надеялся, что по крайней мере для внешних планет (Юпитера, Сатурна, Урана), массы которых хорошо известны благодаря наблюдениям движений спутников этих планет, реальные значения частот окажутся близкими к вычисленным.
Однако последующие расчеты в еще более высоком порядке теории возмущений, выполненные в 1897 г. Хиллом, показали, что и Леверье был не прав. Сохраняя все больше членов разложения, мы получаем новые частоты, сильно отличающиеся от прежних. В таком случае говорят, что ряд теории возмущения не сходится.
Анализ всей проблемы заново провел Пуанкаре. В трехтомном труде «Новые методы небесной механики», опубликованном в 1892 – 1897 гг., он показал, что задача трех тел, движущихся впод действием сил взаимного тяготения, не интегрируется (т.е. не может быть решена аналитически). Пуанкаре доказал, что безусловно, можно искать решение в виде ряда теории возмущений, но все равно ряд не может описать реальное движение планет. Оказывается, получаемые ряды являются, как говорят математики, асимптотическими. Свойство таких рядов заключается в том, что учет первых нескольких членов приводит к сходящемуся результату (каждая следующая поправка меньше предыдущей), однако сумма ряда расходится. Решения, получаемые обрыванием асимптотических рядов, могут с хорошей точностью описать поведение системы на конечном отрезке времени, однако оказываются совершенно непригодными при анализе устойчивости системы за большой промежуток времени.
Совсем недавно, в 60-х гг. нашего столетия, была создана теория КАМ (по именам выдающихся современных математиков Колмогорова, Арнольда и Мозера), позволившая уточнить результаты Пуанкаре. Метод теории возмущений заключается в поиске таких замен переменных, которые позволяют привести систему к интегрируемой и искать малые отклонения от нее, т.е. свести движение к суперпозиции (почти) равномерных движений по окружностям. Теория КАМ показывает, что при некоторых начальных условиях общее движение действительно является квазипериодическим, как и в случае интегрируемых систем. Однако при других значениях начальных условий появляются области неустойчивости (области хаотического движения), в которых происходят значительно более сложные явления, и методы теории возмущений оказываются неприменимыми. Чем меньше параметр e, тем ближе движение к квазипериодическому и тем меньше области неустойчивости. В этом случае теория возмущений хорошо работает, приводя к приближенным результатам, очень близким к реальности.
В случае систем с двумя степенями свободы Пуанкаре предложил очень полезный метод, позволяющий отличить квазипериодическую траекторию от хаотической. Вместо того, чтобы изучать саму траекторию в фазовом пространстве, изучают последовательные пересечения этой траектории с должным образом выбранной плоскостью (или – в общем случае – с поверхностью).
Что же такое фазовая траектория? Рассмотрим для определенности одномерный гармонический осциллятор – колебательную систему, образом которой может служить груз на горизонтальной плоскости без трения, соединенный с упругой пружиной жесткостью k. Груз совершает колебания по закону:
X = Acos(wt + j), следовательно, скорость груза V= - Awsin(wt + j) и импульс p = - mAwsin(wt + j). Как известно, упругая потенциальная энергия сжатой пружины U = kX2 /2. Полная энергия груза равна E=mV2 /2 + kX2 /2 = p2 /(2m) + kX2 /2. Если на плоскости построить график зависимости импульса груза p от координаты х, это и будет фазовая траектория. Благодаря закону сохранения энергии в случае одномерного движения задача определения формы фазовой траектории решается просто, так как формулу закона сохранения энергии можно переписать в виде: