Лекции по ТОЭ
p>
|Теория / ТОЭ / Лекция N 2. Топология электрической цепи. |

|Электрическая цепь характеризуется совокупностью элементов, из которых она состоит, и|
|способом их соединения. Соединение элементов электрической цепи наглядно отображается|
|ее схемой. Рассмотрим для примера две электрические схемы (рис. 1, 2), введя понятие |
|ветви и узла. |
|[pic] |
|Рис.1 |
|Рис.2 |
| |
|Ветвью называется участок цепи, обтекаемый одним и тем же током. |
|Узел – место соединения трех и более ветвей. |
|Представленные схемы различны и по форме, и по назначению, но каждая из указанных |
|цепей содержит по 6 ветвей и 4 узла, одинаково соединенных. Таким образом, в смысле |
|геометрии (топологии) соединений ветвей данные схемы идентичны. |
|Топологические (геометрические) свойства электрической цепи не зависят от типа и |
|свойств элементов, из которых состоит ветвь. Поэтому целесообразно каждую ветвь схемы|
|электрической цепи изобразить отрезком линии. Если каждую ветвь схем на рис. 1 и 2 |
|заменить отрезком линии, получается геометрическая фигура, показанная на рис. 3. |
|Условное изображение схемы, в котором каждая ветвь заменяется отрезком линии, |
|называется графом электрической цепи. При этом следует помнить, что ветви могут |
|состоять из каких-либо элементов, в свою очередь соединенных различным образом. |
|Отрезок линии, соответствующий ветви схемы, называется ветвью графа. Граничные точки |
|ветви графа называют узлами графа. Ветвям графа может быть дана определенная |
|ориентация, указанная стрелкой. Граф, у которого все ветви ориентированы, называется |
|ориентированным. |
|Подграфом графа называется часть графа, т.е. это может быть одна ветвь или один |
|изолированный узел графа, а также любое множество ветвей и узлов, содержащихся в |
|графе. |
|В теории электрических цепей важное значение имеют следующие подграфы: |
|1. Путь – это упорядоченная последовательность ветвей, в которой каждые две соседние |
|ветви имеют общий узел, причем любая ветвь и любой узел встречаются на этом пути |
|только один раз. Например, в схеме на рис. 3 ветви 2-6-5; 4-5; 3-6-4; 1 образуют пути|
|между одной и той же парой узлов 1 и 3. Таким образом, путь – это совокупность |
|ветвей, проходимых непрерывно. |
|2. Контур – замкнутый путь, в котором один из узлов является начальным и конечным |
|узлом пути. Например, для графа по рис. 3 можно определить контуры, образованные |
|ветвями 2-4-6; 3-5-6; 2-3-5-4. Если между любой парой узлов графа существует связь, |
|то граф называют связным. |
|3. Дерево – это связный подграф, содержащий все узлы графа, но ни одного контура. |
|Примерами деревьев для графа на рис. 3 могут служить фигуры на рис. 4. |
|[pic] |
|Рис.4 |
|4. Ветви связи (дополнения дерева) – это ветви графа, дополняющие дерево до исходного|
|графа. |
|Если граф содержит m узлов и n ветвей, то число ветвей любого дерева [pic], а числа |
|ветвей связи графа [pic]. |
|5. Сечение графа – множество ветвей, удаление которых делит граф на два изолированных|
|подграфа, один из которых, в частности, может быть отдельным узлом. |
|Сечение можно наглядно изобразить в виде следа некоторой замкнутой поверхности, |
|рассекающей соответствующие ветви. Примерами таких поверхностей являются для нашего |
|графа на рис. 3 S1 иS2 . При этом получаем соответственно сечения, образованные |
|ветвями 6-4-5 и 6-2-1-5. |
|С понятием дерева связаны понятия главных контуров и сечений: |
|главный контур – контур, состоящий из ветвей дерева и только одной ветви связи; |
|главное сечение – сечение, состоящее из ветвей связи и только одной ветви дерева. |
|Топологические матрицы |
|Задать вычислительной машине топологию цепи рисунком затруднительно, так как не |
|существует эффективных программ распознавания образа. Поэтому топологию цепи вводят в|
|ЭВМ в виде матриц, которые называют топологическими матрицами. Выделяют три таких |
|матрицы: узловую матрицу, контурную матрицу и матрицу сечений. |
|1. Узловая матрица (матрица соединений) – это таблица коэффициентов уравнений, |
|составленных по первому закону Кирхгофа. Строки этой матрицы соответствуют узлам, а |
|столбцы – ветвям схемы. |
|Для графа на рис. 3 имеем число узлов m=4 и число ветвей n=6. Тогда запишем матрицу |
|АН , принимая, что элемент матрицы [pic](i –номер строки; j –номер столбца) равен 1, |
|если ветвь j соединена с узлом i и ориентирована от него, -1, если ориентирована к |
|нему, и 0, если ветвь j не соединена с узломi . Сориентировав ветви графа на рис. 3, |
|получим |
| |
| |
| [pic] |
| |
|[pic] |
|[pic] |
|[pic] |
| |
|.Данная матрица АН записана для всех четырех узлов и называется неопределенной. |
|Следует указать, что сумма элементов столбцов матрицы АН всегда равна нулю, так как |
|каждый столбец содержит один элемент +1 и один элемент -1, остальные нули. |
|Обычно при расчетах один (любой) заземляют. Тогда приходим к узловой матрице А |
|(редуцированной матрице), которая может быть получена из матрицы АН путем |
|вычеркивания любой ее строки. Например, при вычеркивании строки “4” получим |
| |
| |
| [pic] |
| |
|[pic] |
|[pic] |
|[pic] |
| |
|.Число строк матрицы А равно числу независимых уравнений для узлов [pic], т.е. числу |
|уравнений, записываемых для электрической схемы по первому закону Кирхгофа. Итак, |
|введя понятие узловой матрицы А, перейдем к первому закону Кирхгофа. |
|Первый закон Кирхгофа |
|Обычно первый закон Кирхгофа записывается для узлов схемы, но, строго говоря, он |
|справедлив не только для узлов, но и для любой замкнутой поверхности, т.е. |
|справедливо соотношение |
|[pic] |
|(1) |
| |
|где [pic]- вектор плотности тока; [pic]- нормаль к участку dS замкнутой поверхности |
|S. |
|Первый закон Кирхгофа справедлив и для любого сечения. В частности, для сечения S2 |
|графа на рис. 3, считая, что нумерация и направления токов в ветвях соответствуют |
|нумерации и выбранной ориентации ветвей графа, можно записать |
|[pic]. |
|Поскольку в частном случае ветви сечения сходятся в узле, то первый закон Кирхгофа |
|справедлив и для него. Пока будем применять первый закон Кирхгофа для узлов, что |
|математически можно записать, как: |
|[pic] |
|(2) |
| |
|т.е. алгебраическая сумма токов ветвей, соединенных в узел, равна нулю. |
|При этом при расчетах уравнения по первому закону Кирхгофа записываются для (m-1) |
|узлов, так как при записи уравнений для всех m узлов одно (любое) из них будет |
|линейно зависимым от других, т.е. не дает дополнительной информации. |
|Введем столбцовую матрицу токов ветвей |
|I= |
|[pic] |
| |
|Тогда первый закон Кирхгофа в матричной форме записи имеет вид: |
|АI=O |
|(3) |
| |
|– где O - нулевая матрица-столбец. Как видим, в качестве узловой взята матрица А, а |
|не АН, т.к. с учетом вышесказанного уравнения по первому закону Кирхгофа записываются|
|для (m-1) узлов. |
|В качестве примера запишем для схемы на рис. 3 |
|[pic] |
|[pic] |
| |
|Отсюда для первого узла получаем |
|[pic], |
|что и должно иметь место. |
|2. Контурная матрица (матрица контуров) – это таблица коэффициентов уравнений, |
|составленных по второму закону Кирхгофа. Строки контурной матрицы Всоответствуют |
|контурам, а столбцы – ветвям схемы. |
|Элемент bij матрицы В равен 1, если ветвь j входит в контур i и ее ориентация |
|совпадает с направлением обхода контура, -1, если не совпадает с направлением обхода |
|контура, и 0, если ветвьj не входит в контурi. |
|Матрицу В, записанную для главных контуров, называют матрицей главных контуров. При |
|этом за направление обхода контура принимают направление ветви связи этого контура. |
|Выделив в нашем примере (см. рис. 5) дерево, образуемое ветвями 2-1-4, запишем |
|коэффициенты для матрицы В. |
| |
| |
|[pic] |
| |
|[pic] |
|[pic] |
|[pic] |
| |
| |
|. |
|Перейдем теперь ко второму закону Кирхгофа. |
|Под напряжением на некотором участке электрической цепи понимается разность |
|потенциалов между крайними точками этого участка, т.е. |
|[pic] |
|(4) |
| |
|Просуммируем напряжения на ветвях некоторого контура: |
|[pic] |
|Поскольку при обходе контура потенциал каждой i-ой точки встречается два раза, причем|
|один раз с “+”, а второй – с “-”, то в целом сумма равна нулю. |
|Таким образом, второй закон Кирхгофа математически записывается, как: |
|[pic] |
|(5) |
| |
|- и имеет место следующую формулировку: алгебраическая сумма напряжений на зажимах |
|ветвей (элементов) контура равна нулю. При этом при расчете цепей с использованием |
|законов Кирхгофа записывается [pic]независимых уравнений по второму закону Кирхгофа, |
|т.е. уравнений, записываемых для контуров, каждый из которых отличается от других |
|хотя бы одной ветвью. Значение топологического понятия “дерева”: дерево позволяет |
|образовать независимые контуры и сечения и, следовательно, формировать независимые |
|уравнения по законам Кирхгофа. Таким образом, с учетом (m-1) уравнений, составленных |
|по первому закону Кирхгофа, получаем систему из [pic]уравнений, что равно числу |
|ветвей схемы и, следовательно, токи в них находятся однозначно. |
|Введем столбцовую матрицу напряжений ветвей |
|U= |
|[pic] |
| |
|Тогда второй закон Кирхгофа в матричной форме записи имеет вид |
|BU = 0. |
|(6) |
| |
|В качестве примера для схемы рис. 5 имеем |
|[pic], |
|откуда, например, для первого контура получаем |
|[pic], |
|что и должно иметь место. |
|Если ввести столбцовую матрицу узловых потенциалов |
|= |
|[pic] |
| |
|причем потенциал последнего узла [pic], то матрица напряжений ветвей и узловых |
|потенциалов связаны соотношением |
|U=AТ[pic] |
|(7) |
| |
|где AТ - транспонированная узловая матрица. |
|Для определения матрицы В по известной матрице А=АДАС , где АД – подматрица, |
|соответствующая ветвям некоторого дерева, АС- подматрица, соответствующая ветвям |
|связи, может быть использовано соотношение В= (-АТС А-1ТД1). |
|3. Матрица сечений – это таблица коэффициентов уравнений, составленных по первому |
|закону Кирхгофа для сечений. Ее строки соответствуют сечениям, а столбцы – ветвям |
|графа. |
|Матрица Q , составленная для главных сечений, называется матрицей главных сечений. |
|Число строк матрицы Q равно числу независимых сечений. |
|Элемент qij матрицы Q равен 1, если ветвьвходит в i-е сечение и ориентирована |
|согласно направлению сечения (за положительное направление сечения принимают |
|направление ветви дерева, входящей в него), -1, если ориентирована противоположно |
|направлению сечения, и 0, если ветвьj не входит в i-е сечение. |
|В качестве примера составим матрицу Q главных сечений для графа на рис. 5. При |
|указанной на рис. 5 ориентации ветвей имеем |
| |
| |
|[pic] |
| |
|[pic] |
|[pic] |
|[pic] |
| |
|В заключение отметим, что для топологических матриц А, В и Q, составленных для одного|
|и того же графа, выполняются соотношения |
|АВТ= 0; |
|(8) |
| |
| |
|QВТ= 0, |
|(9) |
| |
|которые, в частности, можно использовать для проверки правильности составления этих |
|матриц. Здесь 0 – нулевая матрица порядка [pic]. |
|Приведенные уравнения позволяют сделать важное заключение: зная одну из |
|топологических матриц, по ее структуре можно восстановить остальные. |
|Литература |
|1. Теоретические основы электротехники. Т.1. Основы теории линейных цепей./Под ред. |
|П.А.Ионкина. Учебник для электротехн. вузов. Изд.2-е , перераб. и доп. –М.: Высш. |
|шк., 1976.-544с. |
|2. Матханов Х.Н. Основы анализа электрических цепей. Линейные цепи.: Учеб. для |
|электротехн. и радиотехн. спец. 3-е изд. переработ. и доп. –М.: Высш. шк., 1990. |
|–400с. |
|3. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, |
|С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с. |
| |
|Контрольные вопросы и задачи |
|Сформулируйте основные топологические понятия для электрических цепей. |
|Что такое узловая матрица? |
|Что такое контурная матрица? |
|Что такое матрица сечений? |
|Токи ветвей некоторой планарной цепи удовлетворяют следующей полной системе |
|независимых уравнений: |
|[pic]. |
|Восстановив граф цепи, составить матрицы главных контуров и сечений, приняв, что |
|ветвям дерева присвоены первые номера. |
|Ответ: |
|B= |
|[pic] |
|Q= |
|[pic] |
| |
|Составить матрицу главных контуров для графа на рис. 3, приняв, что дерево образовано|
|ветвями 2, 1 и 5 |
|Ответ: |
|B= |
|[pic] |
| |
|Решить задачу 5, используя соотношения (8) и (9). |

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать