Люминесцентные свойства нанокристаллов сульфида кадмия

Интегральный квантовый выход фотолюминесценции коллоида CdS –  ПВС равен (1.0±0.1)·10-3, т.е. примерно на порядок ниже квантового  выхода для влажных образцов CdS/полимер. Такое различие обусловлено более высокой концентрацией вакансий на поверхности частиц CdS в полимере, поскольку в последнем случае вакансии могут возникать, по-видимому, также и из-за взаимодействия поверхностных ионов кадмия с группами SO3- полимера вместо сульфид ионов.

В работе [11] показано, что кинетические кривые затухания фотолюминесценции образцов CdS/полимер неэкспоненциальны, причем суммарная продолжительность люминесценции  достигает почти микросекунды, что соответствует эффективному времени жизни люминесценции  200 – 300 пс. В то же время для  коллоидных образцов время жизни фотолюминесценции обычно составляет несколько наносекунд [5,6,7], хотя известны и случаи более длительной люминесценции [4]. Для сухих образцов CdS/полимер также наблюдалась длительная неэкспоненциальная люминесценция (рис.1.5), причем в интервале 150 – 400 нс после  возбуждающего импульса характерное время жизни люминесценции оказалось равным 180 нс. Однако и для коллоидных образцов CdS - ПВС  наряду с относительно короткоживущей люминесценцией (время жизни  2 – 5 нс, т.е. чуть больше длительности вспышки возбуждающего света)  мы обнаружили долгоживущую фотолюминесценцию с эффективным временем (соответствующим краю кинетической кривой на рис.1.5) ~500 пс. Последняя величина превышает время жизни люминесценции  образцов CdS/полимер. В целом кинетика фотолюминесценции исследованных образцов, особенно CdS – ПВС, имеет довольно сложный  вид и существенно неэксноненциальна (см. рис.1.5).

Как показано в [5], время жизни τа фотогенерированных дырок в малой частице полупроводника n-типа сильно зависит от размеров частицы:

           (1.5)

где  – время жизни дырок в массивном полупроводнике, kэффективная константа скорости поверхностной реакции дырок, ro – радиус частицы.

Согласно [6], время жизни τ неравновесных дырок в массивном образце CdS составляет ~1 мкс, вследствие чего определяющий вклад в


I, отн. ед.

 

90

 

60

 

30

 

l, нм



 

800

 

7000

 

500

 

600

 

3000

 

400

 


Рис.1.4. Спектры возбуждения и испускания люминесценции CdS/полимер (сплошная линия), CdS  - ПВС (штриховая линия) [11].

Iл,.отн.ед

 
 


4

 

3

 

2

 

1

 

100 нс

 

10000

 

1000

 

100

 

t, нс


 

1000

 

500

 

0

 


Рис.1.5. Кинетические кривые спада фотолюминесценции (λ=670нм) коллоида CdS-ПВС, [CdS]=5·10-4моль/л (1), содержащего дополнительно [Na2S]=3·10-3(2), 3.5·10-4моль/л (3); (4)-сухого образца CdS-полимер (λ=630нм) [11]. наблюдаемую кинетику фотолюминесценции обсуждаемых образцов вносят  реакции дырок на поверхности частиц полупроводника. Выше уже отмечалась существенная  полидисперсность CdS/полимер и CdS – ПВС. Наличие в образце частиц, различающихся по размерам в десятки раз, приводит к столь же широкому набору времен жизни фотолюминесценции и к неэкспоненциальности ее кинетики. Наблюдаемое  существенное отличие эффективных времен жизни фотолюминесценции  образцов CdS/полимер и CdS – ПВС, возможно, обусловлено тем, что  в случае полимерной матрицы крупные частицы полупроводника, образующиеся, как указывалось, за счет ассоциация катион обменных полостей, не являются на самом деле поликристаллами, как  это имеет место  в CdS, поскольку слагающие  их кристаллиты с размерами 10  и 36 Å могут быть электрически изолированными за счет тонких прослоек полимера. В целом же определяющее влияние дисперсности полупроводника на его люминесцентные кинетические характеристики является несомненным.

Присутствие в растворе сульфида натрия приводит к уменьшению  интенсивности люминесценции, но не влияет на вид кинетической кривой  затухания свечения (рис.1.5). Как видно из рис.1.6, зависимость интенсивности фотолюминесценции образца CdS – ПВС от концентрации тушителя описывается уравнением  ln(Io/I)=[Q]/Q, где Q – средняя по объему  концентрация Na2S, содержащегося в образце.

Ранее [5,6] указывалось, что такие особенности тушения люминесценции могут возникать вследствие сильной адсорбции тушителя на поверхности частиц полупроводника. Действительно, полученная изотерма адсорбции сульфид ионов из водного раствора на поверхности частиц суспензии CdS указывает на то, что практически монослойное заполнение поверхности CdS сульфид ионами достигается уже при очень низких ~10-4 моль/л концентрациями сульфида натрия в растворе. При более высоких концентрациях Na2S в растворе  количество  адсорбированного  сульфата натрия  остается  практически  постоянным  вплоть  до  [Na2S]=5х10-3 моль/л (при [Na2S]>5·10-3 моль/л наша методика не позволяет надежно измерить количество адсорбированного Na2S) и равно θ=(1.4±0.1)·10-3 моль/см2. В соответствии с [6]

.   (1.6)

Это выражение позволяет из данных по тушению люминесценции вычислить эффективный диаметр частиц в коллоиде, d=10 Å. Эта величина практически совпадает с непосредственно измеренными диаметрами частиц. По-видимому, для более точного вычисления радиуса  суспензированных частиц по данным люминесцентных измерений  необходимо  усреднить соответствующее (1.6) выражения по функции распределения частиц по размерам.


1.4.Влияние внешних факторов на люминесценцию

 нанокристаллов соединений А2В6


В работе [12] были получены и исследованы спектры люминесценции квантовых точек CdSe при различных временах облучения на воздухе. Первоначально монослои выдерживали при давлении 10-5 Torr для стабилизации эталонной точки. При таких условиях наблюдались два максимума люминесценции: узкая экситонная полоса, локализованная у 580 нм и широкая полоса, обусловленная глубокими ловушками, локализованная вблизи 730 нм. Излучение на глубоких ловушках обусловлено излучением из состояний, закрепленных на  середине запрещённой зоны и которые возникают из-за поверхностных дефектов или атомов непассивированной поверхности и будут обсуждаться дальше в тексте. Квантовый выход (КВ) сухих монослоёв квантовых точек был измерен с использованием интегральной сферы и был равен 0,4% [13]. Кстати, глубокоуровневая эмиссия представляет боле, чем половину от общей эмиссии пленок в вакууме и представляет менее 1% от общей эмиссии коллоидных растворов.

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать