Люминесцентные свойства нанокристаллов сульфида кадмия

В камере с образцом, через которую пропускался комнатный воздух, интенсивность экситонной люминесценции в максимуме увеличивался в 20 раз относительно вакуума на протяжении первых 200 сек (КВ 8%) и затем падал приблизительно асимптотически до величины в 6 раз больше, чем в вакууме (КВ 2,4%). 

Заметим, что глубокоуровневая эмиссия имеет намного меньшую долю в общей люминесценции, свидетельствуя о том, что увеличение КВ люминесценции происходит в основном из-за увеличения КВ экситонной эмиссии. Рост люминесценции происходит экспоненциально с постоянной времени 52 сек. Уменьшение люминесценции после 200 сек описывается двумя экспонентами с временными постоянными 560 и 2300 сек.  Дальнейший анализ подгонки спектров люминесценции показал изменение как положения максимума, так и полуширины спектра излучения. Положение экситонного максимума  сместилось в голубую область на ~16 нм (60 мэВ) с увеличением облучения на воздухе и все ещё продолжало смещаться после 5000 сек облучения. Это голубое смещение свидетельствует о том, что размер квантовых точек уменьшается вследствие фотохимии.  Постепенное голубое смещение квантовых точек, облучённых на воздухе, преимущественно наблюдаемое при комнатной температуре в люминесценции одиночных квантовых точек является следствием фотоокисления поверхности [14].    

В работе [12] определили, что активация люминесценции сильно зависит от атмосферных условий. Для установления того факта, что состав атмосферы играет существенную роль в активационном процессе был поставлен следующий эксперимент. Начиная от эталонной точки в вакууме (10-5 Torr), авторы пропускали через образец различные атмосферные газы, включая сухие Ar,N2,O2,CO2, а также азот и кислород, пропущенные через деионизованную воду, и проследили эволюцию спектров люминесценцию. Фотоактивация не наблюдалась при пропускании сухих газов, но для влажных N2 и O2 наблюдалась активация, приблизительно идентичная той, которая наблюдалась ранее. Общее увеличение интенсивности  люминесценции при выдержке во влажном  азоте и кислороде было одинаково. Этот результат показывает, что вода, присутствующая в воздухе, принимает участие в фотоактивационном процессе. Возможно определить  зависимость фотоактивационного эффекта от относительной влажности газа.

Выдержка на воздухе без освещения не существенно активирует люминесценцию даже при повышенной температуре.

Данные в работе [12] свидетельствуют о том, что поверхностные адсорбенты, в частности молекулы вода, ответственны за активацию люминесценции. Модель, построенная на основании  этих данных, показывает, что молекулы воды адсорбируются на поверхности квантовых точек в процессе облучения и пассивируют поверхностные состояния. Эти поверхностные состояния были ответственны за гашение экситонной эмиссии в квантовых точках, а также и за уменьшение люминесценции на дефектах в вакууме. В процессе начального времени облучения (10 сек) экситонная эмиссия увеличивается, а «дефектная» уменьшается последовательно с уменьшением плотности дефектов, так как концентрация поверхностных адсорбентов увеличивается.

В дополнение, авторы [12] установили, что уменьшение люминесценции при длительном облучении приводит к образованию окиси на поверхности. Окисление поверхности объёмного кристалла CdSe, как известно, является нестабильным и создает поверхностные дефекты. Фотоокисление квантовых точек может привести к созданию новых дефектов, которые гасят экситонную люминесценцию.

В итоге, установили, что сложную кинетику КВ люминесценции и полуширины полосы экситонной эмиссии, которая свидетельствует о конкуренции между двумя процессами: пассивацией поверхностных дефектов адсорбированными молекулами воды, что увеличивает интенсивность люминесценции, и фотоокислением квантовых точек, которое уменьшает эффективность люминесценции.

2. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ     ЛЮМИНЕСЦЕНЦИИ НАНОКРИСТАЛЛОВ CdS,               ВЫРАЩЕННЫХ В ЖЕЛАТИНЕ


2.1. Методика эксперимента

 а) Методика измерений.

Исследования фотолюминесценции (ФЛ) нанокристаллов сульфида кадмия, диспергированных в полимере в области длин волн 0,45 - 1,0 мкм производили на измерительной установке, блок-схема которой изображена на рис.2.1. Люминесцирующие образцы (О) охлаждались в стеклянной камере (К), в которую заливался жидкий азот. Ее основой был медный блок, снабженный снизу нагревателем из нихромовой проволоки, а сверху металлическим сосудом Дьюара, в который заливался жидкий азот. Температура кристалла, закрепленного на медном блоке, могла быть установлена в пределах от 77 до 450 К. Термический контакт образца с блоком осуществлялся посредством пасты из окиси бериллия. В измерительной камере создавался вакуум порядка 10-5   мм рт. ст. Температура образца измерялась с помощью дифференциальной медь константановой термопары (I), ЭДС которой регистрировалась вольтметром В7-21 (2). Возбуждение люминесценции образцов осуществлялось излучением гелий кадмиевого лазера ЛГМ-517 с длиной волны 441,6 нм (3). Интенсивность возбуждающего света регулировалась нейтральными светофильтрами. Люминесцентное излучение образцов, прошедшее через монохроматор УМ-2 (4), регистрировалось фотоэлектронным умножителем ФЭУ-62 или ФЭУ-106 (5). Питание ФЭУ осуществлялось стабилизированным напряжением (6).Сигнал с анода фотоумножителя подавался на усилитель постоянного тока ИМТ-05 (7), затем либо на вход двухкоординатного самопишущего потенциометра Н-306 (8), либо на цифровой вольтметр В7-21 (9).



Представленные в работе спектры фотолюминесценции построены с учетом спектральной чувствительности фотоумножителя. Поправочные коэффициенты для пересчета определялись с помощью лампы СИ-6 с вольфрамовым излучателем ленточного типа. Табличные значения относительных величин энергии излучения вольфрамовой ленты на различных длинах волн были позаимствованы из работы [9].

Для изучения спектров возбуждения фотолюминесценции монохроматор настраивался на длину волны, соответствующую максимуму полосы свечения. В качестве источника возбуждения использоваласъ галогенная лампа, излучение которой разлагалось в спектр при помощи монохроматора спектрофотометра С-4А (10). Постоянство энергии возбуждающего света на разных длинах волн обеспечивалось изменением ширины щелей монохроматора.

Измерения спектров фотолюминесценции проводились на нанокристаллических пленках представляющих собой нанокристаллы в желатиновой матрице. Механические свойства матрицы накладывали определенные ограничения на условия проведения эксперимента. Так как желатина плавиться при температуре 50 0С, то прогрев выше этой температуры был сопряжён с риском «потери» образца. Однако, визуально контролируя состояние образцов, нагрев осуществлялся до 150 0С. При этом нанокристаллы в отличие от монокристаллов сохраняли заметное люминесцентное свечение даже при таких высоких температурах.

 Так же, были измерены спектры фотолюминесценции монокристаллов сульфида кадмия, с целью привязаться к природе центров свечения и определить механизмы излучательной рекомбинации. Для этого использовали монокристаллы отличающиеся друг от друга как по форме спектра излучения, так и по природе центров свечения.

б) Методика получения образцов.

 В  данной   работе    для    получения   нанокристаллов   сульфида   кадмия  использовался   метод   химического   синтеза.   В   соответствии   с   этим   методом     получение    проводится    в   две    стадии.  1  стадия -  приготовление   растворов   сульфида    натрия    с    концентрацией - 0.25  М,  

нитрата    кадмия    с   концентрацией – 0.025  М,  стабилизатора,   в   качестве   которого      использовалась      фотографическая       желатина  5%.  

2   стадия -  проведение   реакции   в    растворе   желатины.   Реакция    проводилась    при  температуре    40  0С.   К   10  мл    раствора   желатины      добавлялось    10  мл   раствора   нитрата   кадмия.   Далее   колба    с    полученным   раствором    помещалась на   печь-мешалку    с    температурой   порядка   температуры реакции  (40  0С).  Использование    электромагнитной   мешалки   обусловлено    тем,   что   необходимо   исключение  образования  пузырьков   на   поверхности      в   ходе    реакции,   чего   нельзя   достичь    обычным   перемешиванием    раствора.   На   следующем   этапе    в   раствор   добавлялся   сульфид   натрия,   очень   медленно   с   постоянной   скоростью  (1  капля   в  секунду).   Были   получены   образцы     с   различным     количеством   сульфида   натрия     в    реакции  (0.5  мл,  0.7  мл,  1 мл, 2   мл,  2.5 мл,  2.7  мл,  3 мл,  3.5 мл, 4  мл).  Реакция    проводилась   в течение   15  минут   при   непрерывном помешивании. После чего, одинаковое      количество  раствора  (8   капель)  поливались  на  стеклянные  подложки     и     помещались   в   сушильный   шкаф    на  3   часа    при     температуре   35-400С.   При получении все описанные технологические факторы  поддерживались постоянными для изучения влияния изменения   концентрации   исходных   реагентов на   свойства      получаемых   образцов.   По   внешнему   виду   образцы    отличались    по   цвету:  от    бледно-желтых  для  малых   концентраций ионов   серы     до    ярко-оранжевого     для   больших   концентраций.

 

2.2. Люминесцентные характеристики нанокристаллов CdS


а) Спектры фотолюминесценции нано- и монокристаллов сульфида кадмия.

В работе исследовались нано- и монокристаллические образцы, полученные при различных технологических режимах. Для получения образцов нанокристаллов использовались реагенты Cd(N03)2 и Na2S концентрации которых изменялись в процессе синтеза. Было замечено, что состав раствора существенно влияет на спектральное распределение фотолюминесценции нанокристаллов. С целью проведения сравнительного анализа люминесцентных свойств нанокристаллов и монокристаллов были выбранны монокристаллы CdS, спектр которых содержал в видимой области три полосы свечения  (l1=540 нм, l2=590 нм, l3=740 нм) или две полосы (l=540 нм, l=750 нм)

 На рис. 2.2 показаны спектры ФЛ нано и монокристаллов сульфида кадмия, измеренные при температуре 113 К. Необходимо отметить, что у нанокристаллов по сравнению с монокристаллом CdS наблюдалась очень яркая люминесценция, причем в образцах с большой концентрацией ионов

серы в растворе доминировало длинноволновое свечение в спектре люминесценции.

Это проиллюстрировано  на рис. 2.2,  нанокристаллы имеют две полосы  люминесценции: коротковолновую (№2) E=2.39 эВ (lmax=520 нм) и длинноволновую (№19) E=1.73 эВ (lmax=720 нм), как уже отмечалось, относительный вклад этих полос зависит от технологии приготовления плёнок. Удельный вес коротковолновой полосы больше в образцах содержащих меньшую концентрацию серы.    Монокристаллический образец CdS (№ 7) имеет три полосы фотолюминесценции (l1=540 нм, l2=590 нм, l3=740 нм) локализованные в области E1=1.68 эВ, E2=2.1 эВ, E3=2.37 эВ, а монокристаллический образец CdS (№6) – две полосы,

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать