Методика формирования понятия Плазма в школьном курсе физики
p> Степенью ионизации плазмы называют отношение числа ионизованных атомов к полному их числу в единице объема плазмы: [pic].

В условиях теплового равновесия она определяется формулой Саха:

[pic]. (2.1)
Здесь [pic], и [pic] - концентрация (число частиц в 1 м3) ионизованных и нейтральных атомов соответственно, Г-температура газа в К, k - постоянная
Больцмана, [pic] - энергия ионизации газа, т.е. энергия, необходимая для удаления электрона с внешней электронной оболочки атома. Обычно [pic] выражается в процентах, тогда результат, полученный из формулы Саха, необходимо умножить на 100 %. В воздухе при нормальных условиях для азота
[pic] и [pic] эВ

(см. задачу 2.1). Относительная ионизация ничтожно мала: [pic]
С ростом температуры степень ионизации остается низкой до тех пор, пока средняя кинетическая энергия молекул газа не станет всего лишь в несколько раз меньше энергии ионизации [pic]. После этого, [pic] резко возрастает и газ переходит в плазменное состояние. При дальнейшем возрастании температуры концентрация нейтральных частиц становится меньше концентрации ионизованных атомов, и плазма, в конечном счете, оказывается полностью ионизованной. Именно поэтому полностью ионизованная плазма составляет астрономические тела температурой несколько миллионов градусов и отсутствует на Земле.
Термоионизация газа происходит в тех случаях, когда средняя кинетическая энергия молекул газа превышает энергию ионизации: [pic], где

[pic].

(2.2)

Нетрудно убедиться, что ионизация газа при тепловых соударениях молекул возможна лишь при очень высоких температурах [pic]. Вычисления показывают:
(положим [pic] эВ), что [pic].
В зависимости от степени ионизации плазма подразделяется на слабо ионизованную ([pic] составляет доли процента), частично ионизованную ([pic] около нескольких процентов) и полностью ионизированную ([pic] близка к 100
%). Слабо ионизованной плазмой в природных условиях является ионосфера
Земли, тлеющий разряд. Во Вселенной слабоионизованная плазма - это солнечный ветер, атмосферы холодных звезд, холодные облака межзвездного газа. Горячие звезды, туманности, солнечная корона и некоторые межзвездные облака - это полностью ионизованная плазма, которая образуется при высокой температуре.

? Что называется степенью ионизации?
? При каком условии происходит термоионизация газа? Назовите порядок температуры, при которой происходит термоионизация.
? Какое деление плазмы существует по степени ионизации? Приведите примеры.

Задачи для самостоятельного решения

2.1. Вычислите концентрацию идеального газа при следующих условиях: а) при температуре 0 °С и давлении 101 325 Па (эта величина называется числом
Лошмидта); б) при комнатной температуре (20 °С) и давлении 10~3 мм рт. ст.
2.2. Концентрация электронов проводимости в германии при комнатной температуре 3 • 1019 м3. Какую часть составляет число электронов проводимости от общего числа атомов? Плотность германия 5400 кг / м3, молярная масса 0,079 кг / моль.
2.3. Используя данные для воздушной среды, с помощью формулы Саха получите степень ионизации воздуха и сравните результат с предлагаемым значением.
2.4. Вычислите степень ионизации солнечного ветра, ионосферы Земли (слоя
D), солнечной короны, используя необходимые величины из «Приложения».

§ 3. КОЛЛЕКТИВНЫЕ СВОЙСТВА ПЛАЗМЫ

Поскольку плазма представляет собой газ, состоящий из заряженных и нейтральных частиц, то она проявляет коллективные свойства. Понятие коллективные свойства поясним на следующем примере. Рассмотрим силы, действующие на молекулу, скажем, в обычном воздухе. Сразу заметим, что сила гравитационного притяжения пренебрежимо мала по сравнению с силой электромагнитного взаимодействия (см. задачу 3.1). Расчет показывает, что силы взаимодействия (притяжения и отталкивания) действуют между нейтральными молекулами на очень малых расстояниях (Fпр~1/r7, a Fот~1/ r13), где r - расстояние между молекулами, т.е. являются короткодействующими. В случае же плазмы, которая содержит заряженные частицы, ситуация совсем иная. Во время движения заряженных частиц изменяются локальные концентрации положительного и отрицательного зарядов, что приводит к возникновению электрических полей. С движением зарядов связаны также токи и, следовательно, магнитные поля. Эти поля на больших расстояниях могут влиять па движение других заряженных частиц. Например, в плазме из-за более медленного убывания с расстоянием кулоновских сил (~1 / r2) взаимодействие между частицами постоянно влияет на их движение. Таким образом, понятие коллективные свойства означает, что в плазме движение частиц определяется не только локальными условиями, но и ее состоянием в удаленных областях.
Однако справедливо это не всегда. Если плазма настолько разрежена, что кулоновское взаимодействие между частицами оказывается значительно меньшим, чем влияние на них внешних электрических и магнитных полей (в космических условиях последние обычно существенны), то плазму можно рассматривать как совокупность отдельных частиц, движение которых определяется внешними полями. В такой плазме обычно не проявляются специфически плазменные коллективные процессы. С другой стороны, если плазма настолько плотная, что частота парных столкновений достаточно велика, или если процессы протекают с характерным временем, значительно превышающим время свободного пробега электрона или иона, то и здесь нет специфически плазменных процессов. В таких случаях плазму можно считать сплошной средой и применять для ее описания магнитогидродинамические уравнения или соотношения.

? Расскажите о понятии коллективные свойства на примере взаимодействия молекул в воздухе и заряженных частиц в плазме.
? При каких условиях плазму можно считать сплошной средой?

Задача для самостоятельного решения
3.1. Сравните силы гравитационного и электростатического взаимодействия между электроном и протоном. Масса электрона [pic] кг, масса протона
[pic]кг, заряд электрона отрицателен и равен по модулю [pic]Кл, заряд протона положителен и равен по модулю заряду электрона.

§ 4. КВАЗИНЕЙТРАЛЬНОСТЬ ПЛАЗМЫ

Плазма - это материальная среда, образованная коллективом частиц, которые взаимодействуют друг с другом. Свободные заряженные частицы, особенно электроны, легко перемещаются под действием электрического поля. Поэтому в состоянии равновесия пространственные заряды входящих в состав плазмы отрицательных электронов и положительных ионов должны компенсировать друг друга так, чтобы полное поле внутри плазмы было равно нулю. Именно отсюда вытекает необходимость практически точного равенства концентраций электронов и ионов в плазме - ее квазинейтральность. Нарушение квазинейтральности плазмы связано с разделением зарядов, обусловленным смещением группы электронов относительно ионов. Это должно приводить к возникновению электрических полей, которые стремятся скомпенсировать созданное возмущение и тут же восстановить квазинейтральность. Поля растут с увеличением концентрации частиц и в случае плотной плазмы могут достигать больших значений.
Для оценки напряженности поля, возникающего при нарушении нейтральности плазмы, предположим, что в некотором объеме произошло полное разделение зарядов и внутри этого объема остались только заряды одного знака. Электрическое поле в рассматриваемой области определяется соотношением:

[pic] ,

(4.1)

где Х - линейные размеры области смещения. Потенциал плазмы в области разделения зарядов в связи с этим изменится на

[pic],

(4.2)

Рассмотрим пример. Пусть полностью ионизованная плазма получена из водорода, находящегося при температуре Т = 300 К и давлении 1 мм рт. ст. В каждом кубическом сантиметре такой плазмы будет по [pic] ионов и электронов. Поэтому, если резкое нарушение квазинейтральности произойдет в объеме с характерным размером х, порядка 1 мм, то электрическое поле превзойдет 1012 В / м, и в пределах этого объема возникнет разность потенциалов порядка 109 В. Ясно, что подобное разделение зарядов совершенно нереально. Даже в гораздо более разреженной плазме резкое нарушение квазинейтральности в указанных объемах будет немедленно ликвидироваться возникающими электрическими нолями. Поле будет выталкивать из объема, где произошла декомпенсация зарядов, частицы одного знака и втягивать в эту область частицы противоположного знака. Однако, если выделить в плазме достаточно малый объем, квазинейтральность в нем может и не сохраниться, т.к. поле, созданное избытком частиц одного знака, окажется слишком слабым для того, чтобы существенно повлиять на движение частиц.
Итак, квазинейтральность - это приблизительное равенство объемных плотностей положительных и отрицательных зарядов.

? Что такое квазинейтральность?
? Опишите процессы, происходящие в плазме при нарушении ее нейтральности.
? Чем квазинейтральность отличается от истинной нейтральности?

Задачи для самостоятельного решения

4.1. Получите формулу для напряженности и потенциала электрического поля в рассмотренном в параграфе примере.
4.2. Найдите напряженность электрического поля и возникающую разность потенциалов при нарушении квазинейтральности плазмы солнечной короны в объеме с характерным размером 1 м. используя данные, приведенные в
«Приложении»

§ 5. ТЕМПЕРАТУРА ПЛАЗМЫ

Введение величины Т как температуры плазмы оправдано только тогда, когда средняя кинетическая энергия электронов и ионов одинакова. В общем случае в плазме следует различать по меньшей мере две температуры - электронную Тe и ионную Ti. По аналогии с температурой газа, которая вводится по формуле
[pic], можно ввести эти температуры из равенств:

[pic] , [pic]
В плазме, которая создается в лабораторных условиях или в приборах, Te обычно значительно превосходит Тi. Например, оказывается, что [pic]К при
[pic] К. Различие между Te и Тi, обусловлено громадной разницей в массах электрона и иона. Внешние источники электрического питания, с помощью которых создается плазма (при различных формах разряда в газах), передают энергию электронной компоненте плазмы, т.к. именно электроны являются носителями тока. Ионы приобретают тепловую энергию в основном в результате столкновений с быстро движущимися электронами. При таких столкновениях относительная доля кинетической энергии электрона, которая может быть передана иону, не должна превышать [pic]. Средняя доля энергии, передаваемой при столкновении, еще меньше. Поскольку me> 1, т.е.
[pic] то магнитное поле вморожено в среду (например, в плазму). Эти условия обычно выполняются в плазме солнечного ветра (большие L), в высокотемпературной плазме (большая[pic])
Вмороженность магнитного поля во многих случаях позволяет, не прибегая к громоздким расчетам, с помощью простых представлений получить качественную картину течения среды и деформации магнитного поля.
? Объясните процесс «вмораживания» магнитного поля в плазму.
? При каком условии возможна вмороженность магнитного поля в плазму?

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать