Заметим, что при некоторых условиях в типично волновом явлении обнаруживаются квантовые свойства света. Например, эти свойства обнаружены в известных опытах С. И. Вавилова по квантовым флуктуациям в интерференционном поле при малых световых потоках. Свои наблюдения флуктуации световых потоков С. И. Вавилов рассматривал как одно из важнейших доказательств квантовых свойств излучения.
Чтобы учащиеся убедились в этом, полезно предложить им определить частоту, импульс, энергию фотонов, соответствующих различным длинам волн оптического диапазона.
Обсуждение данных поможет школьникам получить более конкретные представления о шкале электромагнитных волн и понять, почему в коротковолновой области в большей степени обнаруживаются корпускулярные свойства, а волновые проявляются слабее. Например, если сопоставить излучения двух одинаковых по мощности источников света (красного (видимого) и рентгеновского), то можно увидеть, что энергия фотона рентгеновского излучения во много раз больше энергии фотона видимого света и при одинаковой интенсивности плотность фотонов красного света в 1000-100000 раз больше плотности рентгеновского излучения.
Из условий равенства интенсивностей следует
,
где n – число фотонов, проходящих за 1 с через поверхность единичной площади, откуда
.
Поэтому красное излучение проявляется как непрерывное, а рентгеновское – как нечто дискретное.
Целесообразно предложить учащимся предсказать, какие (химические, биологические и др.) действия могут оказывать различные виды излучений.
Для подчеркивания дуализма свойств света полезно заполнить таблицу, в которой указаны основные физические величины, отражающие диалектическое единство дискретности (прерывности) и континуальности (непрерывности) материи. При объяснении особое внимание обращают на рассмотрение формул, объединяющих оба класса величин.
Физические величины, используемые для описания волновых свойств света |
Физические величины, используемые для описания квантовых свойств света |
Формулы, объединяющие оба класса физических величин |
Частота ν Период Т Длина волны λ = υТ |
Масса фотона m Скорость фотона c Импульс фотона p = mc Энергия фотона |
3.4. ПРИМЕНЕНИЕ ФОТОЭФФЕКТА
Учащиеся должны знать устройство и принцип - действия двух- фотоэлектрических приборов: фотоэлементов, в основе которых лежит внешний фотоэффект, и полупроводниковых фоторезисторов, основанных на внутреннем фотоэффекте. (Фоторезисторы изучались в IX классе, и их устройство и действие надо лишь повторить.) Вентильные фотоэлементы не изучаются; следует, однако, продемонстрировать их действие на опыте.
Надо более или менее подробно остановиться на различных применениях фотореле и использовании фотоэлементов для воспроизведения звука, записанного на пленку.
При наличии соответствующего оборудования весьма желательно продемонстрировать также воспроизведение звука с кинопленки.
Полено показать на уроке учебный кинофильм «Фотоэлементы и их применение». Где показывается устройство вакуумного фотоэлемента и фотореле, а также применение фотореле для автоматического счета изделий, обеспечения безопасности на резальной машине в типографии и др. Также показано устройство и действие вентильного фотоэлемента и фототелеграфа. Эти моменты можно демонстрировать в ознакомительном плане. На уроке можно заслушать сообщения учащихся об отдельных применениях фотоэффекта.
4. РОЛЬ И ЗНАЧЕНИЕ РАЗДЕЛА «КВАНТОВАЯ ОПТИКА»
Квантовая механика — физическая теория, открывшая своеобразие свойств и закономерностей микромира, установившая способ описания состояния и движения микрочастиц. Методы квантовой механики находят широкое применение в квантовой электронике, в физике Твердого тела, современной химии. Ее широко используют в физике высоких энергий, изучающей строение ядра атома и свойства элементарных частиц. Результаты этих исследований находят все большее применение в технике. Достаточно вспомнить успехи квантовой теории твердых тел, выводы которой положены в основу создания новых материалов с заранее заданными свойствами (магнитными, полупроводящими, сверхпроводящими и т.д.), лазеров, ядерных реакторов. Квантовая физика является более высокой ступенью познания, нежели классическая физика. Она установила ограниченность многих классических представлений. Ныне, когда ХХ в. подходит к концу, элементы квантовой физики должны быть включены в школьный курс. Иначе знания, полученные школьниками при изучении курса физики, останутся на уровне XIX в. Представления учащихся о строении и свойствах окружающего мира будут неполными и неадекватными современному научному знанию о них.
Однако введение основ квантовой оптики в среднюю школу — сложная методическая задача. Малая наглядность квантово механических объектов (частица — волна), сложность математического аппарата, необычность исходных идей и понятий квантовой оптики создают методические трудности. Поэтому вопросы квантовой оптики очень осторожно вводят в школьный курс.
Долгое время учащиеся средней школы получали представление лишь о квантовой теории света (на примере фотоэффекта). В конце 40-х гг. в школьный курс включили строение атома. Успехи атомной энергетики привели к тому, что в последующие годы на изучение этих вопросов стали выделять больше времени. Однако объем материала возрастал за счет включения в программу полуэмпирического материала (состав ядра, радиоактивность, ядерные реакции, применение радиоактивных изотопов, цепная реакция деления урана, ядерный реактор, использование ядерной реакции в мирных целях). В 1972 г. в программу ввели понятие об элементарных частицах. Однако изложение идей квантовой физики оставалось на прежнем уровне, т. е. ограничивалось квантовой теорией света и постулатами Бора, причем первый вопрос изучался в разделе «Оптика», а второй в разделе «Атом и атомное ядро».
Программа общеобразовательной школы усиливает внимание к вопросам квантовой физики. Она ввела в школьный курс отдельный раздел «Квантовая оптика», который включает в себя уже две темы, содержание которых значительно обновлено. Есть вопросы о строении атома и квантовых представлениях, пусть на качественном уровне, и в базовом курсе физики.
Основные познавательные задачи этого нового раздела - ознакомить учащихся со специфическими законами, действующими в области микромира, и завершить формирование представлений о строении вещества, начатое в базовой школе. Рассмотрим, как решают каждую из этих задач.
При изучении вопросов о световых квантах и действиях света школьников впервые знакомят с квантовой идеей. Они узнают, что свет, который в явлениях интерференции и дифракции ведет се6я как волна, представляет собой поток фотонов; энергия фотонов не может принимать произвольных значений, она дискретна, кратна некоторой постоянной величине h (постоянной Планка). Корпускулярные свойства света проявляются при взаимодействии света с веществом (в фотоэффекте, фотохимических реакциях и т.п.) тем ярче, чем больше энергия фотона. Важным доказательством существования частиц света (фотонов), обладающих определенным импульсом, энергией и массой, является эффект Комптона, изучение которого впервые в последние годы предусматривает школьная программа.
При изучении строения атома по Бору учащиеся узнают, что энергия электрона в атоме также имеет дискретный характер, она квантуется. При изучении строения атома они узнают также, что дуализм свойств присущ не только фотонам (частицам) света, но и всем элементарным частицам - электрону, протону, нейтрону и др.
Объяснение корпускулярно—волнового дуализма свойств частиц света и вещества знакомит их качественно (без изучения уравнения Шредингера) со своеобразием движения микрочастиц: поведение каждой элементарной частицы описывается вероятностными законами, для нее нельзя строго указать координату и импульс, лишено смысла понятие «траектория» и т. п. С вероятностными закономерностями, действующими в области микромира, учащиеся встречаются и при изучении законов радиоактивного распада: распад каждого атома — случайное явление, для которого можно указать лишь меру его вероятности, а одной из главных характеристик атома и любой элементарной частицы является среднее время их жизни. Так постепенно знакомят школьников со своеобразием законов, действующих в микромире: корпускулярноволновым дуализмом свойств частиц, дискретным характером их состояний, дискретностью величин (на примере энергии), вероятностным характером законов.
Вторая познавательная задача раздела — раскрыть современные представления о строении вещества. В базовом курсе физики строение вещества рассматривали в основном на молекулярном уровне. Молекулярно-кинетическая теория объясняла строение и свойства газов (количественно), жидкостей и твердых тел (на качественном уровне). О строении атома школьники в базовом курсе физики получили лишь самые предварительные сведения, достаточные для понимания таких явлений, как электризация, электрический ток. В данном разделе учащихся знакомят со строением вещества на атомном и субатомном уровне. Вначале они изучают строение атома по Резерфорду — Бору, а затем, после обсуждения дуализма свойств микрочастиц, получают и современные представления о строении атома. Достаточное внимание в этом разделе уделяют составу и свойствам ядра атома (его размеру, заряду, массе, плотности, энергии связи, удельной энергии связи и др.). В конце раздела учащихся знакомят с основными характеристиками и свойствами элементарных частиц, дают представление о современной их классификации, о роли их в строении вещества и в передаче взаимодействий.
Некоторые сведения о ядерной физике теперь даются и в базовом курсе физики.
Раздел «Квантовая оптика» решает, кроме того, важные задачи политехнического образования. При его изучении учеников знакомят с устройством и принципом действия фотоэлементов, с примерами их использования в технике, физическими основами спектрального анализа, работой ядерного реактора и применением ядерной энергии в мирных целях, с использованием радиоактивных изотопов в промышленности, сельскохозяйственном производстве, в науке, медицине.
В процессе преподавания этого раздела учитель постоянно должен решать задачу формирования научного мировоззрения учащихся. Для формирования научного мировоззрения учащихся важно убедить их в реальном существовании таких непосредственно невоспринимаемых органами чувств объектов, как элементарные частицы. Реальность элементарных частиц доказывают тем, что можно экспериментально измерить их характеристики, предсказать, исходя из свойств частиц, различные ядерные реакции и превращения частиц и не только экспериментально осуществить теоретически предсказанные процессы, но и использовать их в практических целях. Знакомство с элементарными частицами дает веское подтверждение принципа неисчерпаемости материи, ибо учащиеся убеждаются в том, что материальные объекты и их свойства крайне многообразны, элементарные частицы не являются «простыми», они обладают множеством свойств и способны к взаимопревращениям.
Корпускулярно-волновой дуализм свойств света и элементарных частиц, взаимопревращаемость элементарных частиц позволяют раскрыть материальное единство мира и диалектическую связь прерывного и непрерывного, а подчинение всех ядерных процессов основным законам сохранения служит хорошей иллюстрацией принципа неуничтожимости и несотворимости материи и движения. Качественное своеобразие законов микромира (вероятностный характер закономерностей, дискретность состояний, отсутствие траекторий и т. д.) позволяет проиллюстрировать закон перехода количественных изменений в качественные. Вероятностный характер квантовых закономерностей глубже раскрывает принцип взаимной связи явлений, соотношение между случайным и необходимым.
В этом разделе продолжается формирование гносеологического аспекта мировоззрения. Здесь рассматривают такие важные мировоззренческие вопросы, как роль идеальных моделей в процессе познания реальной действительности и пределы их применимости. Модельные представления используют при рассмотрении строения атома, ядра атома, при раскрытии механизма испускания света атомом, при объяснении деления ядер и т. п.
Как и во всем курсе физики, большое внимание при изучении этого раздела обращают на роль опыта в процессе познания, на взаимосвязь теории и практики, эксперимента. Необходимо подчеркивать, что теория применима в тех границах, в которых экспериментально подтверждаются вытекающие из нее следствия. Противоречие экспериментальных фактов теории служит отправным моментом для ее уточнения или создания новой теории. Например, изучая оптику, учащиеся убедились в том, что явления отражения преломления, интерференции и дифракции хорошо объясняются на основе теоретических представлений о волновой природе света. Однако волновая теория света не объясняет все законы фотоэффекта. Необходимость объяснения новых экспериментальных фактов привела к созданию квантовой теории света. Опыт Резерфорда опроверг первоначальную модель атома, предложенную Томсоном, а на смену модели атома Резерфорда пришла теория Бора, которая лучше согласовывалась с экспериментальными фактами.
История развития учений о свете и о строении атома позволяет проиллюстрировать бесконечность процесса познания и его диалектический характер. Соотношение между абсолютной и относительной истиной необходимо обсудить при ознакомлении учащихся с принципом соответствия. Квантовая оптика является более глубокой физической теорией, ибо она более полно объясняет большой круг физических явлений, нежели классическая оптика. Квантовая оптика установила, что ряд представлений классической оптики не являются абсолютными, они хороши лишь дл макроскопических тел. Но квантовая физика не отрицает полностью классическую. Она лишь ограничивает область ее применения. Законы классической механики и электродинамики для макротел остаются незыблемыми. Кроме того, в предельных случаях выводы квантовой физики совпадают с результатами классической. При больших квантовых числах дискретность «смазывается» и процесс становится квазинепрерывным.
Последний раздел школьного курса физики открывает большие возможности для воспитания и развития учащихся. Для развития мышления учащихся в этом разделе широко использую такие приемы, как сравнение, систематизация и классификация. Например, полезно предложить им сравнить свойства жидкостей и ядра атома. Выявление общих для них свойств обеспечивает лучшее понимание школьниками капельной модели ядра. Сравнивать можно также свойства фотона со свойствами других элементарных частиц, свойства ядерных сил со свойствами гравитационных и электромагнитных сил. Результаты этих сравнений отражают в систематизирующих таблицах, обобщающих полученныё учащимися знания по соответствующему вопросу. В конце изучёния раздела целесообразно обобщить все полученные знания о строении вещества.
Материал раздела предоставляет большие возможности для организации самостоятельной деятельности учащихся. Полезно широко использовать периодическую систему Менделеева и предложить им на ее основе самостоятельно определить состав ядер некоторых элементов, рассчитать для них дефект масс, энергию связи, удельную энергию связи и т. п. Оценочные расчеты различных параметров микромира, широко используемые в этом разделе, могут стать содержанием самостоятельной деятельности учащихся в школе и дома, а анализ полученных в них результатов — хорошая школа развития мышления учащихся. Этой же цели служит решение задач, которые в данном разделе носят по преимуществу тренировочный характер и требуют акцента на анализе полученных данных: полезно сопоставлять энергии связи ядер с энергией связи других систем, например молекул; кинетическую энергию a-частиц с энергией теплового движения молекул; плотность ядерного вещества с известными плотностями различных веществ и т. п. Результаты этого анализа позволяют выпускникам школ лучше понять порядок величин в микромире, осмыслить его.
В развитие квантовой физики внесли вклад многие выдающиеся отечественные и зарубежные ученые: Э. Резерфорд, Н. Бор, П. Кюри, М. Склодовская-Кюри, М. Лауэ, Луи де Бройль, В Гейзенберг, В. Паули, П. Дирак, Э. Шредингер, И. Е. Тамм, О. Ган, Э. Ферми, Л. Д. Ландау, В. А. Фок, Д. В Скобельцын, А. И. Алиханов, В. И. Векслер, И. В. Курчатов и многие другие. Изучение их жизни и деятельности представляет благодатный материал для патриотического и интернационального, а также нравственного воспитания учащихся. Бесконечная преданность науке, трудолюбие до одержимости, научная добросовестность, бескорыстие, понимание своей ответственности перед обществом, скромность в личной жизни свойственны были многим ученым.
ЛИТЕРАТУРА
1. Ванеев А.А., Дубицкая Э.Г., Ярунина Е.Ф. Преподавание физики в 10 классе средней школы. - М., «Просвещение», 1978 г.
2. Каменецкий С.Е. Теория и методика обучения физики в школе (частные вопросы). - М., «ACADEMA», 2000 г.
3. Интернет
4. Бугаев А.И. Методика преподавания физики в средней школе. - М., 1981 г.
5. Вольштейн С.Л., Качинский А.М. Уроки физики в 10 классе. – Минск, «Народная асвета», 1980г.