Модуляція оптичного випромінювання

Модуляція оптичного випромінювання














Модуляція оптичного випромінювання



Управління випромінюванням - головна проблема, що виникає при освоєнні нового діапазону спектра електромагнітних коливань.

Модуляція світла – зміна його параметрів ( амплітуди, довжини хвилі, фази), можлива також зміна поляризації, напрямку розповсюдження, розподілу лазерних мод і т. ін.) в залежності від управляючого (модулюючого) сигналу. У техніці волоконно-оптичного зв'язку модулюючий сигнал є електричним, але він може бути також акустичним, механічним і навіть оптичним.

Прилади, які здійснюють управління оптичним випромінюванням у відповідності з параметрами сигналу, що передається, називаються модуляторами. Можливість використання принципових переваг оптичного діапазону багато в чому залежить від наявності достатньо ефективних та порівняно нескладних схем модуляції.

Для видимого та ближнього інфрачервоного оптичного діапазону (1-8)1014 Гц принципово можливі смуги частот модуляції, які дорівнюють 1011-1012 Гц.

До модуляторів оптичного діапазону ставляться такі вимоги:

- широкосмуговість, що забезпечує необхідну інформаційну ємність;

- лінійність модуляційної характеристики;

- великий динамічний діапазон;

- достатня глибина модуляції світла;

- простота реалізації;

- мінімальна маса та габарити;

- висока ефективність, економічність, низька вартість;

-експлуатаційна надійність (стабільність параметрів при зміні температури, тиску, вологості навколишнього середовища).

Існує два основних засоби модуляції оптичного випромінювання. Перший з них заснований на використанні джерела, в якому здійснюється процес модуляції. Модуляція випромінювання у цьому випадку здійснюється в процесі його генерації. Така модуляція називається прямою, внутрішньою або безпосередньою, її прикладом є зміна потужності випромінювання напівпровідникового лазера або світлодіода зміною його струму накачування. Другий засіб - модуляція випромінювання джерела спеціальним модулятором, встановленим на його виході. Така модуляція називається зовнішньою.

На рис. 1 наведені схеми внутрішньої і зовнішньої модуляції.

Вибір того або іншого засобу модуляції залежить від типу випромінювача та від необхідної смуги частот модулюючого сигналу. В системах, що використовують світловипромінюючі діоди (СД) та лазерні діоди (ЛД) застосовується внутрішня модуляція. В системах, що використовують інші типи лазерів (це системи з атмосферним оптичним каналом), змінювати з великою швидкістю енергію накачування складно, тому в цьому випадку застосовується зовнішня модуляція.


ДУС – джерело управляючого сигналу; ГСН – генератор струму накачування; ДОВ – джерело оптичного випромінювання; ОМ – оптичний модулятор.

Рисунок 1 – Схеми внутрішньої (а) та зовнішньої (б) модуляції оптичного випромінювання


Досліджуються питання застосування зовнішньої модуляції у ВОСП наступних поколінь, в яких будуть застосовуватися різноманітні оптоелектронні схеми.

У загальному випадку внутрішня модуляція, яка заснована на зміні потужності накачування, більш економічна, ніж зовнішня. При зовнішній модуляції спочатку необхідно отримати від джерела повну оптичну потужність, а після цього для формування сигналу більшу її частину загасити. При внутрішній модуляції потужність, що випромінюється, логічно регулювати від мінімальних значень до максимальних у відповідності з управляючим сигналом. У цьому випадку струм накачування змінюється у відповідності з управляючим (модулюючим) сигналом, що призводить до еквівалентної зміни інтенсивності (потужності) оптичного випромінювання. Цей вид модуляції простий, не вносить втрат в оптичний лінійний тракт, не вимагає складних приладів, він особливо важливий, бо застосовується не тільки до когерентного, але й до некогерентного випромінювання. Модулюючими можуть бути як аналогові сигнали з різноманітними видами модуляції електричної піднесучої, так і цифрові. Найпростішим видом модуляції є аналогова модуляція інтенсивності. Частотна модуляція електричної піднесучої з наступною модуляцією потужності оптичного випромінювання збільшує відношення сигнал/шум, але вимагає більшої смуги частот в лінії, що не є обмежуючим чинником для ВОСП. Можливості амплітудної модуляції оптичного випромінювання обмежені нелінійністю ват-амперної характеристики випромінювача. Ефективними є різноманітні види імпульсної модуляції: широтно-імпульсна (ШІМ), частотно-імпульсна (ЧІМ), позиційно-імпульсна (ПІМ), що називається також фазоімпульсною (ФІМ), інтервально-імпульсна модуляція (ІІМ), імпульсно-кодова та деякі інші.

Для амплітудної модуляції застосовуються неімпульсні випромінювачі: світлодіоди та лазерні діоди безперервної дії. Для імпульсних видів модуляції в основному застосовуються імпульсні ЛД.

При імпульсних видах модуляції випроміювання напівпровідникових лазерів в умовах кімнатної температури відбувається розігрів p-n переходу, що веде до збільшення порогового струму, зменшення вихідної потужності, деякого розширення спектра випромінювання. Ці явища обмежують швидкість передачі системи. Для попередження розігріву p-n переходу ЛД вміщують в мікроохолоджувач.

Окрім модуляції інтенсивності, можливі частотна та фазова модуляція оптичного випромінювання. Частоту лазера можна змінювати, використовуючи її залежність від температури активної речовини. Цей засіб, що називається термічним, заснований на зміні енергетичних рівнів із зміною температури. Різниця між енергетичними рівнями визначає частоту коливань, тож змінюючи температуру активної речовини лазера, можна змінювати його частоту. Цей засіб є дуже інерційним і має в основному теоретичний інтерес.

Зміна частоти випромінювання можлива під дією магнітного поля (ефект Зеємана). Внаслідок дії магнітного поля спектральна лінія випромінювання лазера розщеплюється на три складові. Для широкополосної модуляції з використанням ефекту Зеємана потрібні відносно потужні магнітні поля, тож необхідні громіздкі та потужні прилади.

Аналогічно для частотної модуляції може бути використаний ефект Штарка, що полягає в розщепленні і зміщенні енергетичних рівнів при накладенні потужного електричного поля. При цьому для зміни частоти на декілька гігагерц потрібна напруженість електричного поля до 105 - 106 В/см. Частотна модуляція може бути здійснена також зміною параметрів оптичного резонатора. Ці засоби модуляції є внутрішніми, бо зміна параметра випромінювання (частоти) відбувається в процесі генерації випромінювання.

Для зовнішньої модуляції оптичного випромінювання застосовуються спеціальні прилади – модулятори, в яких використовуються різноманітні ефекти взаємодії оптичного випромінювання з речовиною (рис. 2). У більшості випадків зовнішня модуляція світла заснована на зміні дійсної або уявної частин діелектричної проникності середовища. Це призводить до модуляції фази або амплітуди світла, що пройшло крізь модулятор.

Більшість оптичних модуляторів можуть бути виконані у будь-якому виконанні: об΄ємному, планарному або волоконному; виняток складають модулятори на основі монокристалічних середовищ, їх волоконне виконання є проблематичним, бо потребує вирощування монокристалів у вигляді волокон. Планарні та смугові модулятори застосовуються в приладах обробки інформації, застосування їх в ВОСП передбачається у перспективі.

Для оптичних модуляторів використовуються оптично анізотропні речовини. Оптичною анізотропією зветься залежність оптичних властивостей середовища від направлення розповсюдження хвилі та її поляризації. Вона зумовлена електричними або магнітними властивостями середовища. Характерною особливістю таких речовин є відмінність показника заломлення для різних напрямків разповсюдження хвилі. Це явище визначає також залежність фазової швидкості світла від властивостей середовища, в якому воно розповсюджується. В оптичних модуляторах найчастіше використовується залежність показника заломлення середовища n від зовнішніх впливів, наприклад, від напруженості електричного або магнітного полів.

 В таких середовищах вектори електричного (магнітного) поля  та індукції  в загальному випадку не паралельні і пов'язані тензорним співвідношенням


,, (1)


де , - тензори діелектричної та магнітної проникностей.

Загалом (1) має вигляд:


,

, (3)

,


де - діелектрична проникність вакууму.

Елементи в (2) характеризують анізотропне діелектричне середовище і складають тензор діелектричної проникності. Аналогічні співвідношення можна навести для векторів і. Тензор діелектричної проникності є симетричним,тобто  Діагональні компоненти тензора ,, звуться головними значеннями тензора відносної діелектричної проникності, а відповідні , ,  головними показниками заломлення і дорівнюють головним осям еліпсоїда уздовж напрямків x, y, z. Цей еліпсоїд визначає поверхню постійної щільності енергії і називається еліпсоїдом показників заломлення (рис 3), для якого виконується рівняння


. (3)


Довжини напівосей еліпса дорівнюють головним значенням показника заломлення кристала. Слід відмітити, що ізотропне середовище характеризується сферичною поверхнею показника заломленя, тобто не залежить від напрямку. На практиці більшість електрооптичних кристалів є одноосними в тому змісті, що вони мають одну головну вісь (звичайно вісь z).

Діелекрична проникність уздовж осі дорівнює , а в перпендикулярних напрямках не залежить від вибору осей (), еліпсоїд показників заломлення у цьому разі є еліпсоїдом обертання. Такі кристали мають два головних значення показника заломлення: та . Хвильовий вектор , хвилі що розповсюджується, можна розкласти на дві компоненти уздовж осей еліпса, тоді одна компонента хвильового вектора нормальною до головної площини, а друга - паралельна їй. Інакше, у хвилі можна виділити дві складові поляризації: одна відповідає коливанням електричного поля перпендикулярно до головної площини (звичайна хвиля ), друга - коливанням вектора Е паралельно до цієї площини. Для будь-якого кутового напрямку Θ хвильового вектора (рис. 2) коливання звичайної хвилі спрямовані вздовж головної осі еліпсоїда показників заломления (вісь у), що відповідає звичайному показнику заломлення. Друга вісь еліпса змінюється із зміною кута Θ, але її значення завжди знаходиться поміж  та , це значення називається незвичайним показником заломлення.

Отже, внаслідок оптичної анізотропії у середовищі виникає подвійне променезаломлення, тобто існує такий напрямок у речовині (z), по якому плоскополяризований промінь світла, що входить в це середовище, перетворюється у два, що розповсюджуються в тому ж напрямку, плоско- поляризованих променів, у яких площини поляризації взаємно перпендикулярні та у загальному випадку не співпадають із площиною поляризації вхідного променя, тобто з΄являються звичайний та незвичайний промені.

Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать