Назви 'звичайний' та 'незвичайний' відповідають різному поводженню променів у кристалі. В анізотропному середовищі в довільному напрямку розповсюджуються дві лінійно поляризовані хвилі із взаємно перпендикулярними поляризаціями. Це означає, що існує дві поверхні хвильових векторів. В одноосному кристалі одна з цих поверхонь - сфера і відповідна хвиля має сферичний фронт. Це звичайна хвиля і для неї кристал є ізотропним середовищем. Хвильовий фронт незвичайної хвилі є еліпсоїдом обертання (для одноосних кристалів). Це зумовлює особливості заломлення світла: при проходженні межі разділу ізотропне середовище - одноосний кристал падаючий промінь подвоюється, звичайний промінь поводить себе аналогічно хвилям в ізотропному середовищі, заломлений промінь лежить у одній площині із променем, що падає (для нього поверхня хвильових векторів- сфера, а не еліпсоїд).
Другий промінь - незвичайний, він є аномальним, у загальному випадку він не лежить у площині падіння. Звичайний промінь має постійну швидкість розповсюдження, яка не залежить від зовнішнього впливу на речовину, швидкість другого змінюється у відповідності з мірою зовнішнього впливу на кристал
; . (4)
Таким чином, після проходження крізь анізотропне середовище плоскополяризований промінь перетворюється в два когерентних плоскополяризованих промені, що мають зрушення фаз світлових коливань. При складанні цих коливань за межами анізотропного середовища утвориться промінь світла, характер поляризації якого відрізняється від лінійної поляризації вхідного променя та залежить від зрушення фаз між звичайним та незвичайним променями. Модуляція поляризації за допомогою поляроїдів перетворюється в амплітудну.
При зовнішньому впливі (електричному, магнітному, механічному) на анізотропне середовище змінюється еліпсоїд показників заломлення, що веде відповідно до зміни двопроменезаломлення. При цьому буде змінюватися швидкість незвичайного променя, а на виході анізотропного середовища буде змінюватися характер поляризації світла. Зміна поляризації може бути перетворена у зміну інтенсивності за рахунок інтерференції між складовими поляризованої хвилі, тобто можлива реалізація амплітудної модуляції.
Деякі матеріали в електричному полі стають двопроменезаломлюючими (наведене двопроменезаломлення). Відомі два різновиди електрооптичного ефекту: нелінійний (квадратичний) електрооптичний ефект Керра та лінійний оптичний ефект Поккельса. Зміна коефіцієнта заломлення кристала залежить від типу кристала, прикладеної електричної напруги, її напрямку відносно оптичних осей кристала X, Y, Z. Оптична анізотропна речовина в електричному полі набуває властивостей двопроменезаломлення з оптичною віссю, яка направлена вздовж силових ліній електричного поля (ефект Керра). При розповсюдженні світла перпендикулярно до оптичної осі існує таке співвідношення
, (5)
де К - постійна Керра, λ-довжина оптичної хвилі; E-напруженість прикладеного електричного керуючого поля.
При проходженні шляху L різниця оптичних шляхів звичайного та незвичайного променів складає.
, (6)
а різниця фаз між хвилями
. (7)
Ефект Керра має дуже малу інерційність, тобто запізнення зміни оптичної анізотропії від напруженості керуючого електричного поля не перевищує 10-10с. Це дозволяє створити швидкодіючі ключі, модулятори світла та інші прилади, що називаються осередками Керра. За відсутності зовнішнього поля осередок не пропускає світло, при появі зовнішнього поля, коли осередок діє як чвертьхвильова пластинка, інтенсивність світла, що пройшло крізь неї, сягає максимуму, таким чином, осередок діє як модулятор інтенсивності (потужності) оптичного випромінювання. Наведене двопроменезаломлення пропорційне першому ступеню напруженості прикладеного до кристала електричного поля називається ефектом Поккельса. Ефект Поккельса має таку ж швидкодію, як і ефект Керра, однак напруга, що прикладається до кристала приблизно на порядок менша напруги, необхідної для одержання в осередку Керра однакового подвійного променезаломлення при рівних відстанях між електродами. В осередку Керра ця напруга складає кіловольти. Охолодження модулятора до температури, близької до точки Кюрі, дозволяє знизити напругу до 100 В.
Ефект Поккельса використовується для створення швидкодіючих ключів, модуляторів та інших приладів, що називаються осередками Поккельса. Ефект Поккельса виникає як при розповсюдженні променя вздовж прикладеної напруги або оптичної осі кристала - подовжній ефект, так і перпендикулярно йому - поперечний ефект (рис. 4).
Поперечні осередки Поккельса мають деякі переваги у порівнянні з подовжніми. Електроди у поперечних осередках розташовуються паралельно пучку світла, відстань між ними (d) може бути достатньо малою, а довжина шляху променя L достатньо великою. Це дозволяє створити напівхвильовий осередок з відносно невеликою різницею потенціалів між електродами та забезпечити необхідну різницю оптичних шляхів та розбіжність фаз поміж хвилями у відповідності з 6 та 7.
У подовжніх осередках розбіжність фаз між звичайною та незвичайною хвилями для фіксованої різниці потенціалів не залежить від довжини осередка, тому що при збільшенні його довжини зменшується напруженість електричного поля. Отже, збільшити розбіжність фаз можна лише збільшенням різниці потенціалів, що прикладається до осередка. Проте для створення високошвидкісних осередків переважно треба використовувати подовжній ефект, тому що в цьому випадку електроди мають менший розмір та відповідно меншу ємність, що підвищує швидкодію осередка.
Найважливішими параметрами електрооптичних модуляторів є напівхвильова напруга та потрібна потужність, що управляється. Напівхвильова напруга Vп забезпечує на довжині L фазове зрушення між звичайною та незвичайною хвилями, що дорівнює π. Напівхвильова напруга змінюється у межах від 100 В до 10 кВ для різних матеріалів. Необхідна потужність визначається виразом
,
де Δf- ширина смуги пропускання; d – відстань між електродами; L- довжина осередка; φ- глибина модуляціі.
Якість усіх типів модуляторів (електрооптичних, магнітооптичних, акустичних) оцінюється критерієм якості модулятора, що пов'язаний з використанням модуляторів у високочастотному діапазоні
.
Для електричних модуляторів інтенсивності та фази використовується ніобат літію (LiNbO5), смуга прозорості якого складає Δλ=0,45-4,5 мкм. Ці модулятори забезпечують частоту модуляції до 4 ГГц.
Основний недолік об΄ємних електрооптичних модуляторів полягає в досить високому критерії якості (або напівхвильової напруги). Ця проблема достатньо успішно вирішується у модуляторах на основі планарних хвилеводів, товщина плівки в такому модуляторі складає декілька мікрометрів. Прикладена напруга змінює модову структуру поля плівки, що призводить до фазової затримки та перетворення мод, це веде до фазової модуляції, яка достатньо легко перетворюється на амплітудну. Критерій якості таких модуляторів нижче на три порядки у порівнянні з об΄ємними, довжина планарного модулятора не перевищує одного сантиметра.
За своєю сутністю з електрооптичним тісно пов'язаний акустооптичний ефект. Акустичний ефект є окремим випадком ефекту фотопружності - зміни показника заломлення речовини під дією пружних механічних впливів. В акустооптичному ефекті еліпсоїд показників заломлення змінюється при впливі механічних напруг , що виникають під дією звукового тиску (акустичної хвилі).
Акустична хвиля в середовищі збуджується за допомогою п΄єзоелектричного перетворювача. При цьому в матеріалі формується дифракційна ґратка, зміни показника заломлення якої в кожній точці та в кожний момент часу будуть пропорційні акустичній хвилі. В залежності від умов узгодження акустичного імпедансу на кінцях зразка у ньому може бути створений або режим біжучих хвиль, або режим стоячих хвиль. Проте швидкість звуку у середовищі значно менша швидкості світла (v<<c), тому у режимі біжучих хвиль світло “не буде помічати” переміщення акустичних хвиль. Отже, в першому наближенні можна розглядати режим стоячих хвиль. В обох режимах акустична потужність змінюється з періодом , де Λ -довжина акустичної хвилі в фотопружному середовищі. Схема акустооптичної системи наведена на рис. 5.
На зразок п΄єзокристала, в якому зовнішнім електричним полем збуджена площинна електрична хвиля, направлена світлова хвиля з хвильовим вектором . Акустична хвиля відображена вектором , а вихідна світлова хвиля - вектором . Для збереження імпульсу та енергії повинні виконуватися умови
Таким чином, світлова хвиля в акустооптичному модуляторі повинна бути практично перпендикулярна акустичній хвилі, що збуджується у зразку (рис. 6).
Ця хвиля падає під дуже малим кутом Θо, а виходить із зразка під кутом Θе. Розподіл світлової хвилі в дальній зоні уздовж напрямку визначається напрямками головних дифракційних максимумів, що визначається з умови
Це так званий режим дифракції Брегга. Якщо до зразка підключити генератор з частотою, що змінюється, то в ньому буде формуватися дифракційна ґратка з періодом, що змінюється. Це дозволяє керувати кутом відхилення пучка на виході або отримати оптичний дефлектор.
При проходженні крізь анізотропне середовище фаза хвилі набуває зрушення після проходження відстані L
. (11)
В акустичному модуляторі інтенсивність модульованого світла визначається глибиною фазової модуляції ΔΦ
, (12)
де І0 - інтенсивність немодульованого світлового потоку.
Конструктивно акустооптичний модулятор являє пластину електрооптичного матеріалу, яка однією боковою стороною контактує з п’єзоелектричною пластиною, в якій збуджуються акустичні коливання при прикладенні до неї електричної напруги відповідної частоти.
Недоліком акустооптичних модуляторів є їх інерційність. Вона зумовлена відносно малою швидкістю розповсюдження акустичних хвиль. Тому, якщо модулюючий сигнал змінюється швидко, то відбувається “змазування” інформації, що переноситься на світловий сигнал. Ширина смуги пропускання акустичних модуляторів може бути розширена при переході до планарних модуляторів. На основі акустооптичного ефекту створені переривачі та модулятори з постійною часу не більше 1 мкс, ефективністю від 50 до 80%.
На основі ефекту Фарадея заснована дія магнітооптичних модуляторів. Ефект Фарадея викликає обертання площини поляризації лінійно- поляризованого світла. Об'ємний модулятор, що складається з магнітооптичного матеріалу, вміщується в соленоїд. Якщо вздовж циліндричного зразка проходить лінійно-поляризоване оптичне випромінювання, то поляризація, а після проходження спеціального аналізатора – й інтенсивність світлової хвилі виявляються функціями прикладеного магнітного поля. Можливий планарний варіант магнітооптичного модулятора. В такому модуляторі, як і в планарному електрооптичному, виникає перетворення мод. Внаслідок сильного двопроменезаломлення моди розповсюджуються під різними кутами (цей кут складає біля 20 градусів). Тому будь-яка модуляція струму намагнічування призводить до змін потужності, що переноситься цією модою.
Недоліком магнітооптичних модуляторів є великий коефіцієнт поглинання тих матеріалів, які використовуються в діапазоні видимого та ближнього інфрачервоного випромінювання. Окрім цього такі модулятори потребують сильних магнітних полів.
Взагалі оптичний модулятор будь-якого типу на основі наведених ефектів може бути виготовлений у волоконному виконанні. Волоконно - оптичні модулятори відкривають нові можливості побудови розподілених систем передачі інформації, дозволяючи здійснити багатократне безрозривне введення інформації у світловий сигнал.
Страницы: 1, 2