3.5. Рентгенолюминесценция галита
3.5.1. Аппаратура для изучения рентгенолюминесценции
Рис.12. Оптическая схема рентгенолюминесцентной установки. |
Рис.11. Функциональная схема рентгенолюминесцентной установки. МХ - монохроматор, БП - блок питания, УПТ - усилитель постоянного тока, ШД - шаговый двигатель, М - устройство метки длины волны, СТС2М - сетевой стабилизатор, С - светофильтр. |
Основу установки для получения спектров рентгенолюминесценции составляет атомно - адсорбционный спектрометр AAS-1, производства Carl Zeiss Jena. Монохроматор позволяет анализировать излучение в области 190-860 нм с дисперсией 15 нм/мм и имеет относительное отверстие 0.1. Функциональная схема установки дана на рис.11, оптическая схема - на рис.12. В качестве источника рентгеновского излучения использован УРС-1.0, излучение направлено вертикально вверх, образец помещается в рентгеновский пучок под углом 300. Приемником оптического излучения служит ФЭУ-106. Динамический диапазон усилителя 10-11-2*10-6 A. Регистрация спектра осуществляется прибором КСПП-4 и встроенным миллиамперметром. Блок сканирования выполнен на основе шагового двигателя ДШИ-200, соединенного с синусным механизмом монохроматора и цифровым счетчиком длин волн. За 1 шаг спектр смещается на 0.0625 нм.
Установка позволяет получать спектры порошков и пластинок кристаллов. Порошковые препараты готовятся осаждением на металлическую подложку из спиртовой или ацетоновой суспензии пробы, измельченной до крупности зерен 0.01-0.001мм. Оптическая схема установки исключает влияние геометрических размеров и глубины слоя образца на интенсивность регистрируемого сигнала.
3.5.2. Спектры рентгенолюминесценции галита
Рис.13. Типичный спектр РЛ галита. Коррекция на фоточувствительность установки не проводилась. |
Съемка всех спектров рентгенолюминесценции производилась при щели 3нм, скорости сканирования 1нм в секунду, постоянной времени 0,5 секунд, скорости записи самописца на ленту 720 мм/час, при разных, коэффициентах усиления сигнала. Полученные спектры РЛ образцов (рис.13) во всех случаях содержат интенсивную полосу рекомбинационной люминесценции на F-центрах с максимумом при 390 нм, осложненную на длинноволновом крыле менее интенсивной полосой рекомбинации электрона на Vk - центрах и узкой полосой на ее коротковолновом крыле. Предположительно узкая полоса может быть отнесена к примесным центрам Ag+ [23].
Рис.14. Изменение интенсивности полос рентгенолюминесценции в синей соли. Сверху - полоса 390 нм, в центре - 460 нм, внизу - 250 нм. |
Для данных полос РЛ обнаружены весьма ощутимые эффекты разгорания и тушения, поэтому были проведены эксперименты по изучению кинетики РЛ. Для этого образец помещался на кристаллодержатель РЛ-установки и без промежуточного выключения рентгеновского источника производилась повторная запись спектра до времени экспозиции 4-5 часов. Примеры изменения интенсивности излучения на разных длинах волн приведены на рис.14 и в полном объеме даны в Приложении (рис.5)
Полоса излучения 390 нм почти во всех случаях постепенно возрастала в интенсивности и достигала стационарного значения. Интенсивности излучения при 250 и 460нм быстро достигали максимума в первые минуты облучения и в дальнейшем медленно спадали. Т.е. в ходе облучения происходит изменение спектрального состава излучения. Кроме того было обнаружено, что характер изменения интенсивности полос излучения в ходе рентгеновской экспозиции зависит от процедуры подготовки препарата. Если для съемки спектра используется кристалл, растертый в порошок, то наблюдается начальный скачек интенсивности излучения, а затем дальнейший спад к стационарному значению того же уровня, что и монокристалле. В следующем разделе подробно рассмотрим процессы накопления центров окраски под действием рентгеновского излучения.
3.6.
Кинетика образования F-центров
в галите
под действием рентгеновского излучения
3.6.1. Влияние рентгеновского излучения на оптическое поглощение галита
Для моделирования процесса природного окрашивания соли были произведены эксперименты по изучению накопления дефектов под действием рентгеновского излучения. Эксперимент по облучению одной пластины, как правило, занимал один день, в течение которого суммарное время облучения достигало 5-6 часов. В случае же с синим Польским образцом эксперимент продолжался три дня и суммарное время облучения составило 18,1 часа. Перерывы между съемками составили в сумме 74 часа. Их приходилось делать из-за невозможности производить облучение образца безостановочно. Для того, чтобы перерывы не влияли на проведение эксперимента образец хранился в морозильной камере, в герметичной емкости с силиконовыми шариками, при температуре приблизительно минус 10С0. Образцы во время облучения находились на расстоянии примерно 15см от выходного окна. В процессе облучения, через различные промежутки времени, производилась съемка спектров поглощения на спектрофотометре SPECORD UV VIS.
На рис.15, 16 приведены спектры поглощения синего и прозрачного образца Соликамск3 в ходе пошагового облучения. Спектры поглощения всех образцов представлены на рис.3 Приложения.
Рис.15. Эволюция спектров оптического поглощения синего образца каменной соли при облучении рентгеновским излучением. |
Рис.16. Эволюция спектров оптического поглощения прозрачного образца каменной соли при облучении рентгеном. |
В спектрах оптического поглощения синих образцов происходит интенсивное увеличение поглощения в полосе F-центра, а также небольшое, но ощутимое прибавление в полосе U-центра. Коллоидный максимум незначительно возрастает и сдвигается примерно на 0,1 эВ в сторону коротких волн. В образцах Соликамск1,2 можно наблюдать очень слабое, но заметное приращение оптического поглощения в полосе 1.8эВ, т.е. М-центров. На спектрах поглощения исходно прозрачного хорошо виден рост оптического поглощения в полосе 2,7 эВ, что соответствует энергии поглощения F-центра, а также в полосе 5,6 эВ, что соответствует U-центрам. Также можно наблюдать у прозрачных образцов рост поглощения в полосе 1,8 эВ, что соответствует M-центрам. Таким образом в ходе рентгеновского облучения происходит образование главным образом F-центров и частичная их агрегатизация в M- центры. Благодаря интенсивному образованию F-центров к концу процесса облучения прозрачные образцы приобретают насыщенную желто-коричневую, а синие - сине-зеленую окраску.
3.6.2. Эффекты разгорания рентгенолюминесценции галита
Для того, чтобы получить детальную картину разгорания рекомбинационной люминесценции F-центров в кристаллах галита, были проведены следующие эксперименты. Рентгенолюминесцентная установка регистрировала изменение интенсивности излучения в полосе 390 нм по мере экспозиции образца рентгеновским излучением. При этом на ленте самописца регистрировалась кривая разгорания РЛ. В результате зарегистрированы монотонные кривые разгорания, аналогичные показанным на рис. 17.
Рис. 17. Кривые разгорания РЛ в монокристаллах польской соли (слева) и сопоставление кривых разгорания в монокристаллическом и порошковом препаратах прозрачной польской соли (справа). Маркеры - значения, снятые с экспериментальных кривых разгорания, кривые - аппроксимация теоретическими зависимостями.
Как уже отмечалось, кривые разгорания РЛ в порошке и монокристалле сильно различаются (рис.17). В начальный момент времени для порошков характерна более высокая интенсивность рекомбинационной люминесценции нежели, чем в монокристалле. Но в дальнейшем их интенсивности свечения выравниваются.
3.6.3. Кинетика накопления F-центров
Кинетика накопления F-центров в кристаллах щелочных галоидов рассматривается во многих работах. Например, в [24] рассматривается кинетика разгорания люминесценции различных электронно-дырочных центров с учетом процессов перезахвата свободных носителей заряда конкурирующими ловушками электронов и дырок. Наличие в кристалле предцентров постулируется. В монографии К. Пшибрама [11] рассматриваются различные модели накопления F-центров в щелочных галоидах, в которых учитываются электронно-дырочные процессы, происходящие в кристаллах под действием b- и g-радиации и возможность радиационного отжига потенциальных центров. При рентгеновском облучение в галите возможно как образование, так и рекомбинация предцентров. Кроме того, в изучаемых кристаллах некоторые следы агрегатных F-центров начинают появляться только после больших времен рентгеновской экспозиции кристаллов, поэтому такими каналами уменьшения концентрации F-центров можно пренебречь, что значительно упростит вид теоретических зависимостей.
Кинетику образования F-центров рассмотрим в рамках следующей простой модели. Процесс образования F-центров должен учитывать образование вакансий Cl, их рекомбинацию, захват вакансией электронов зоны проводимости с образованием F-центров и их рекомбинацию с дырками валентной зоны в поле рентгеновского излучения. Опишем сначала процесс образования вакансий Cl - потенциальных F-центров. Допустим, что скорость образования вакансий Cl -пропорциональна мощности потока рентгеновского излучения - D. Скорость их рекомбинации пропорциональна числу имеющихся вакансий N, умноженному на вероятность рекомбинации R. Тогда скорость накопления вакансий запишется в виде дифференциального уравнения:
. (3.8)
Если принять, что до облучения в кристалле присутствовало N(t=0)=N0 вакансий, а в стационарном состоянии N(t®¥)=N¥=D/R, то получим следующее решение (3.8):
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11