Основы гидрогазодинамики

Следовательно:



Второй член полученного уравнения выражает закон относительного изменения объема,. Т.е. дивергенцию.

Плотность в общем случае зависит от координат и времени:

Поэтому:



уравнение сплошности (неразрывности).

Если течение стационарное, то уравнение упрощается:

Если жидкость несжимаемая, т.е. , то

8. Нормальное и касательное напряжение, действующие в движущейся жидкости


Закон сохранения количества движения для неизолированной системы может быть записан в виде:



где  - главный вектор количества движения системы

 - главный вектор внешних сил, действующих на систему

В жидкости выделим элементарный тетраэдр с гранями , , , . Индекс показывает перпендикулярно какой оси расположены грани,  - наклонная грань. К граням приложены соответствующие напряжения , , ,  (не перпендикулярные граням). Масса тетраэдра . На тетраэдр действуют массовые и поверхностные силы. Массовые характеризуются вектором плотности , поверхностные – напряжениями.












 - скорость центра инерции тетраэдра



 - третий порядок малости

 - второй порядок малости

Членами третьего порядка малости пренебрегаем.


 

 и т.д.

            пх


Получим связь напряжений, действующих на грани выделенного тетраэдра:


В проекциях на координатные оси это уравнение может быть переписано:



В записанной системе  называются нормальными напряжениями, а  и т.д. называются касательными напряжениями. Все напряжения могут быть записаны в матричной форме в виде симметричного тензора напряжений:



Первый индекс определяет ось, относительно которой расположена грань, второй – ось на которую проецируется напряжение.


9. Уравнение движения сплошной среды в напряжениях


Рассмотрим элементарный параллелепипед с ребрами . Объем его . На него действуют массовые и поверхностные силы определяемые главным вектором внешних сил . К параллелепипеду применим закон сохранения количества движения:












Для определения главного вектора поверхностных сил рассмотрим все силы, дающие проекцию на ось х. Для граней перпендикулярных х проекцию дают только силы, создаваемые нормальными напряжениями. Поэтому равнодействующая этих сил равна:



Аналогично для граней перпендикулярных z получим равнодействующую равную:



Равнодействующая поверхностных сил в проекции на ось х равна:


Тогда закон сохранения количества движения в проекции на х можно записать:



Полученная система называется системой уравнений движения сплошной среды в напряжениях. В левой части стоит полная производная от скоростей, которые могут быть расписаны через локальные и конвективные составляющие ускорения. При определенных условиях левая часть значительно упрощается (стационарное, двухмерное или одномерное течение).


Т.к.


систему можно записать в виде одного уравнения в векторной форме записи:



10. Напряжения, действующие в идеальной жидкости


В идеальной жидкости отсутствуют силы трения, следовательно касательные напряжения равны нулю. Применительно к элементарному тетраэдру проекция напряжения, приложенного к произвольной наклонной грани на ось х равна:



С другой стороны:



Аналогично для проекций на у:


 и


Таким образом в идеальной жидкости величина нормального напряжения в любой точке не зависит от направления площадки к которой напряжение приложено. В идеальной жидкости величина нормального напряжения в точке называется гидродинамическим давлением в этой точке. Модель идеальной жидкости упростила постановку и решение многих задач, в которых влиянием сил трения можно пренебречь.

Знак «минус» ставится, т.к. жидкость оказывает давление на выделенный объем в направлении противоположном внешней нормали.


11. Уравнение движения идеальной жидкости (Эйлера)


Для вывода воспользуемся уравнениями движения в напряжениях:


 - система уравнения Эйлера для идеальной жидкости.


Справедлива, как для сжимаемой, так и для несжимаемой жидкости. Если жидкость сжимаемая, то необходимо ввести функцию координаты от времени:  

Если жидкость несжимаемая, то



12. Уравнение движения идеальной жидкости (Эйлера) в форме Громека


Все преобразования выполним на первом уравнении:


 

                        


Отсюда:


 


- система уравнений движения для и.ж. в форме Громека

Рассмотрим далее движение, предполагая, что массовая сила имеет потенциал и течение баротропное.

Первое предположение утверждает, что у массовых сил имеется потенциал, связанный соотношениями с массовыми силами:


; ; ,


U - потенциал массовых сил.

Второе: баротропным считается течение, у которого ρ считается только функцией давления.

Например, баротропными течением является:

1)                ρ=const – газ или жидкость несжимаемы

2)                движение среды изотермическое -

3)                движение среды адиабатное -

Условие баротропности предполагает, что существует некоторая функция Р, зависящая от давления, которая определяется выражением:



Функция Р связана с р и ρ соотношениями:


; ; .


Подставим в систему уравнений Громека потенциал массовых сил и функцию Р:


 


 - система уравнений Эйлера в форме Громека

Достоинство системы заключается в том, что отдельно выделен ротор, который при определенных условиях может быть равен нулю и система значительно упрощается. Последний член равен нулю, если: 1)  - статическая задача; 2)  - течение безвихревое или потенциальное.

Сумма, стоящая во второй компоненте, имеет определенный физический смысл. В векторной форме система может быть записана в виде одного уравнения:


13. Теорема Бернулли


Рассмотрим стационарное баротропное течение под действием массовых сил, т.е. можно записать:


 


умножим уравнение скалярно на вектор скорости, тогда последний член равен нулю, т.к. идет скалярное перемножение перпендикулярных векторов.



 - единичный вектор в направлении вектора скорости. Вектор скорости направлен по касательной к линии тока или к траектории, т.к. течение стационарное, следовательно:


- производная по направлению.


выражение отражает теорему Бернулли: при стационарном баротропном течении идеальной жидкости под действием потенциальных массовых сил сумма кинетической энергии единицы объема, функции давления приведенного к единице массы потенциала массовых сил сохраняет постоянное значение вдоль любой линии тока.

Если бы скалярно умножили исходное уравнение на вектор угловой скорости, то получили бы аналогичный результат вдоль вихревой линии.

Если течение потенциальное, то  и сразу же получается:


и  


во всем потоке, т.е. трехчлен Бернулли сохраняет постоянное значение во всей области потенциального потока.

Рассмотрим потенциальное течение несжимаемой жидкости под действием сил тяжести. Т.к. жидкость несжимаема то :



У сил тяжести потенциал равен: , zкоордината.

  (1),  - удельный вес

Все эти составляющие имеют размерность давления и называются напорами: - скоростной или динамический напор; р – пьезометрический напор;  - геометрический напор; ро – полный напор

При стационарном течении идеальной несжимаемой жидкости полный напор, равный сумме , сохраняет постоянное значение вдоль любой линии тока, а при потенциальном течении во всей области потока.

В задачах, в которых можно пренебречь влиянием геометрического напора, уравнение Бернулли упрощается и приобретает вид:

Уравнение (1) разделим на , тогда:



все компоненты измеряются в метрах и называются высотами:  - скоростная высота,  - пьезометрическая высота, zнивелирная высота, Н – гидравлическая высота. При стационарном движении идеальной несжимаемой жидкости высота



сохраняет постоянное значение вдоль любой линии тока (или вихревой линии), а при потенциальном течении во всем токе.


14. Основные понятия и определения потенциальных течений


Потенциальные течения – это течения, у которых во всем потоке, следовательно существует функция φ, называемая потенциалом, зависит φ(х,у,z,t) и связана с составляющими U соотношениями:


 

 то есть


Записанные соотношения могут быть записаны и для любой другой функции, которая отличается от φ на константу: . Таким образом, уравнение потенциала определяется с точностью до константы. Геометрическое место точек с одинаковым значением φ образуют эквипотенциальные поверхности, уравнения которых: . Так как , следовательно вектор U расположен по перпендикулярам в любой точке эквипотенциальной поверхности. Так как вектор U касателен к линии тока, то линии тока перпендикулярны эквипотенциальной поверхности.

Рассмотрим стационарное плоское течение, то есть , тогда


и .


Уравнение сплошности имеет вид:



Таким образом, потенциал U удовлетворяет уравнению Лапласа, следовательно является гармонической функцией.

Введем в рассмотрение функцию ψ, связанную с составляющими U уравнениями:


и


Функция ψ удовлетворяет уравнению сплошности, т.к.


ψ – функция тока, она также определяется с точностью до постоянной.

Уравнение называется уравнением линии тока.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать