Проектирование подстанции 110/6 кВ с решением задачи координации изоляции

Исходные данные о надежности элементов системы могут быть представлены точечными оценками средних значений показателей. В таких случаях результаты расчета надежности системы также представляются в виде точечных оценок средних значений показателей. Использование статистических оценок средних значений и среднеквадратических отклонений дает основу для применения формул теории точности при измерении неопределенности результата с помощью среднеквадратической погрешности.

При прогнозировании на экспертной основе показателей надежности нового оборудования оценки могут быть представлены верхней и нижней границей интервала неопределенности. Аналогично верхняя и нижняя границы определяются для доверительного интервала при использовании статистических данных испытаний и эксплуатации. В этих условиях неопределенность показателей надежности системы оценивается с помощью пессимистических и оптимистических оценок, полученных при подстановке соответствующих граничных значений исходных данных в полученные расчетные формулы для системы. Экспертнофакторный подход позволяет оценивать интервал неопределенности с помощью уравнения регрессии.

Наличие погрешности или интервала неопределенности в оценках показателей надежности и целевых функций приводит к ситуациям, когда вследствие малого различия в показателях сравниваемых объектов (вариантов) невозможно с уверенностью определить, какой из объектов лучше. В зону неопределенности по показателям надежности попадают наиболее надежные варианты, в зону неопределенности по приведенным затратам - наиболее экономичные.

Оценки показателей надежности элементов электроэнергетических установок и систем, а именно среднего параметра потока отказов К или со (год-1), среднего времени восстановления т (год) или Тв. ср (ч), частоты вывода в плановый ремонт τп. р (год-1), среднего времени планового простоя тгп.Р (год), средней Длительности планового простоя в течение года /„.р (ч/год), условной вероятности отказа срабатывания устройств защиты и автоматики Q (г0. с), приводятся в широко распространенных изданиях [15, 41, 47, 61].

Иногда приводятся другие показатели надежности элементов: средняя наработка между отказами 7"(ч), интенсивность восстановления ц (ч-1), коэффициент простоя q (%), средняя наработка на отказ N0.c (цикл).

Связь между этими показателями и указанными выше выражается следующими формулами:


А = 8760/Т;Т = (8760μ)-1;


Интервал неопределенности в оценках показателей может быть установлен для каждого элемента в виде максимальных и минимальных значений Amax, Amin.

В источниках приводятся доверительные верхние и нижние границы Ав, Ан, тв, тн и так далее с доверительной вероятностью а=0,9. Однако для некоторых элементов таких оценок нет.


2. Расчет токов короткого замыкания

Разработка главной схемы Подстанции

Главная схема ПС разрабатывается на основании схемы развития энергосистемы и должна:

1.                обеспечивать требуемую надежность электроснабжения потребителей и перетоков мощностей по межсистемной связи в нормальном и послеаварийном режимах;

2.                учитывать перспективу развития;

3.                допускать возможность постепенного расширения РУ всех напряжений;

4.                обеспечивать возможность проведения ремонтных и эксплутационных работ без отключения смежных присоединений.

Подстанция предназначенная для приема и распределения электрической энергии (ЭЭ) потребителям, расположенным в РТ.

ПС подключена к энергосистеме по 110кВ ВЛ. С шин 6 кВ отходит

Для обеспечения надежного питания потребителей во всех режимах работы на проектируемой ПС выбраны 2 трансформатора типа ТДН 16000/110/6,6 – 76У1.

В соответствии с нормами технологического проектирования на стороне 6 кВ принята раздельная работа трансформаторов. Все силовые трансформаторы должны иметь устройство автоматического регулирования напряжения под нагрузкой (РПН)

Расчет нагрузок на ПС

Максимальная нагрузка на всех уровнях напряжения определяется по выражениям:


 МВА

где: n- количество линий;

Pн.max- максимальная нагрузка одной линии;

Kодн- коэффициент одновременности, принимаем Kодн=0.8;

сosφ- коэффициент мощности.

Произведем расчет нагрузки:

 МВА

 МВА

Выбор Силовых Трансформаторов.

Мощность Т выбирается так, чтобы при отключении одного из них на время ремонта или замены второго, оставшийся в работе, с учетом допустимой перегрузки резерва по сетям среднего напряжения (СН) и низкого напряжения (НН), обеспечил питание нагрузки, т. е. исходя из условия:


, МВА.


Выбираем ТС:

 16000 МВА

Выбираем трансформатор типа ТДН 16000/110/6,6 Данные приводим в табл.

Тип автотрансформатора:

Данные о типах выбранных трансформаторов приведены в таблице 2.1.

 

Таблица 2.1

Тип трансформатора

Номинальная мощность, МВА

Потери кВт ХХ КЗ

%

ВН,кВ

НН,кВ

Uкз

Iхх

ТДН 16000/110/6,6

115

6,6

18

85

10,5

0,7

 

Производим проверку выбранных Т в нормальном и аварийном режимах (при отключении одного Т) по условию:

-в нормальном режиме

-в аварийном режиме

,

где Кз - коэффициент загрузки.

Для Т: 15,06/2*10,54=0,7

15,06/10,54=1,4

Расчет токов трехфазного КЗ.

Для проверки аппаратов и проводников по режиму КЗ на электродинамическую и термическую стойкость и высоковольтных выключателей по отключающей способности необходимо определить следующие токи КЗ:

Iпо- начальный периодический ток КЗ (кА);

iу- ударный ток КЗ (кА)

Inτ, iaτ- периодическая и апериодическая составляющие тока КЗ для момента времени τ (кА)

τ- время размыкания контактов.

Расчет производим в следующем порядке:

На основании структурной схемы с учетом принятого режима работы трансформаторов составляется расчетная схема, в которой показываются основное оборудование и источник (Т, Т, энергосистема и связь с энергосистемой- ЛЭП) и приводятся их параметры.

На U= 6кВ принята раздельная работа СТ в целях ограничения токов КЗ в соответствии с НТП ПС.

Составляем схему замещения (смотри рисунок 2.1) для всех элементов расчетной схемы. Производим расчет сопротивлений в относительных единицах относительно базовой мощности, которую принимаем Sб=1000 МВА.


Рисунок 2.1


Производим расчет сопротивлений элементов схемы в относительных единицах:

Х1=Хс*Sб/Sсист=1,8*1000/1200=1,5 о.е.

Х2=Х3=Х0*L*Sб/Uср=0,28*30*1000/13225=0,64 о.е.

Х4=Х5=Uк/100*Sб/Sнт=10,5/100*1000/16=6,56 о.е.

Производим преобразование схемы замещения относительно точек КЗ:

т. К1: U= 110 кВ

Х6=(Х1+Х2)/2=1,07 о.е.

т. К2: U= 6 кВ

Х7=Х6+Х5=1,07+6,56=7,63 о.е.

Расчетная таблица токов трехфазного КЗ.


Таблица 2.2

очка КЗ

К1

К2

Базовая мощность Sб (МВА)

1000

Среднее напряжение Uср (кВ)

115

6,6

Источники

Система

Ном. Мощность источников Sном (МВА)

1200

Результирующие сопротивления Xрез (е.о.)

1,07

7,63

Базовый ток

 (кА)

5,02

87,5

ЭДС источника Е``

1,0

 (кА)

4,7

11,47

Куд

1,608

1,56

Та

0,02

0,02

 (кА)

10,7

25,3

(кА)

6,02

10,5

1

1

 (кА)

4,7

11,47

 (с)

0,035

tсв=0,025

0,025

tсв=0.015

0,17

0,29

 (кА)

1,13

4,7

tс.в.- собственное время отключения (без времени, затраченного на гашение дуги).


Сводная таблица результатов расчетов токов КЗ.


Таблица 2.3

Точка КЗ

Uср (кВ)

Источник

Токи трехфазного КЗ (кА)

Iп0

Iпτ

iаτ

iуд

К1

115

система

4.7

4.7

1.13

10.7

7.77

К2

6.6

11.47

11.47

4.7

25.3

20.9

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать