Омическое сопротивление обмотки:
(3.4.4)
По формуле (3.4.4):
Ом
Рис. 3.4.2. Катушка электромагнита
Дополнительное активное сопротивление:
(3.4.5)
где Z,м экв – эквивалентное магнитное сопротивление, выражение в фигурных скобках уравнения (3.4.2)
По формуле (3.4.5):
Ом
Индуктивное сопротивление обмотки:
. (3.4.6)
По формуле (3.4.6)
Ом
Угол между током и напряжением:
(3.4.7)
По формуле (3.4.7):
Уточненный рабочий ток:
(3.4.8)
где Umax – максимальное значение напряжения, Umax = 1,05 U.
По формуле (3.4.8):
A
Полная мощность:
S=Umax ∙I (3.4.9)
По формуле (3.4.9):
S=1,05∙220∙0,174=40,28 В∙A
Активная мощность Э.М.:
Pэл=I2∙(R0+R∞) (3.4.10)
По формуле (3.4.10):
Pэл=0,1742∙(64,12+294,43)=10,85 Вт
Температура перегрева обмотки:
(3.4.11)
Sохл=Sн+αSвн (3.4.12)
где Sохл – площадь охлаждения обмотки;
Sн - наружная поверхность охлаждения; Sвн – внутренняя поверхность охлаждения;
α = 0 – катушка на изоляционном каркасе;
Sн=(4b0+2πh0) ℓ0 (3.4.13)
km – коэффициент теплоотдачи, т. к. 10-2 м > Sохл >10-4 м2, то
τдоп = θдоп – θ0 – допустимая температура перегрева
. (3.4.14)
По формулам (3.4.11) – (3.4.14):
Sохл=Sн=(4∙(20+4)∙10-3+2∙3,14∙0,0086)∙0,0216=0,00358 м2.
3.5 Проверка отсутствия вибрации якоря
Для проверки отсутствия вибрации якоря необходимо найти в притянутом положении в экранированной (Фδ1) и неэкранированной (Ф δ2) частях полюса.
(3.5.1)
Фδ2=n∙Фδ1 (3.5.2)
где Ф δ – поток в зазоре
(Вб),
По формулам (3.5.1–3.5.2)
(Вб)
Фδ2=0,954∙1,758∙10-4=1,677∙10-4 (Вб)
Среднее значение сил от соответствующих потоков:
(3.5.3)
(3.5.4)
По формулам (3.5.3) и (3.5.4):
(H)
(H)
Амплитудное значение переменной составляющей силы:
(3.5.5)
По формуле (3.5.5):
(H)
Минимальное значение силы:
Pmin=Pcp1+Pcp2-Pm (3.5.6)
По формуле (3.5.6):
Ртт = 38,4 + 69,93 – 58,8 = 49,53 (H).
Найденное значение электромагнитной силы больше расчетного значения противодействующей F'прк = 0,5∙56,8 =28,4 (Н)
Пульсация силы:
(3.5.7)
По формуле (3.5.7):
3.6 Температура стали и К.З. витков
Потери в К.З. витке:
(3.6.1)
По формуле (3.6.1):
(Вт)
Температура перегрева К.З. витка:
(3.6.2)
где Soхлв – поверхность охлаждения витка
(м2)
где kтв – коэффициент теплоотдачи витка, kтв= 3,5∙10-3 Вт/(см2 град)
По формуле (3.6.2)
Потери в стали:
Pc=pc∙Gс (3.6.3)
где рс – удельные потери, при Вm= 1,1 Тл, рс=4 Вт/кг
Gс – вес стали, Gс= γ∙Vст, где γ – плотность стали, γ =7800 кг/м3
Vст – объем стали
(м3)
Gст=7800∙6,9∙10-5=0,54 (кг)
По формуле (3.6.3)
Pc=4∙0,54=2,16 (Вт)
Температура нагрева стали:
(3.6.4)
где Sохлс – поверхность охлаждения стали:
(м2)
где kтс – коэффициент теплоотдачи стали, kтс=11,5 Вт/м2 град
По формуле (3.6.4)
3.7 Расчет тяговой характеристики
Для того чтобы электромагнит надежно работал, необходимо обеспечить превышение тяговой характеристики над противодействующей. Электромагнитную силу определим по энергетической формуле.
где I – действующее значение тока.
Для определения индуктивности и тока необходимо провести расчет магнитной цепи для нескольких положений якоря. При этом сопротивлением стали и К.З. витков можно пренебречь, но учесть рассеяние магнитного потока.
В схеме замещения (рис. 3.7.1) поток рассеяния приведен к полной МДС обмотки, поэтому приведение значение сопротивления рассеяния принято втрое больше, чем его значение, полученное по геометрическим размерам R's = 3Rs.
Рис. 3.7.1. Схема замещения магнитной цепи без учета стали и К.З. витков
Из схемы замещения эквивалентное магнитное сопротивление:
(3.7.2)
где Rn магнитное сопротивление зазора отлипания.
Rn=1/Λn; (3.7.3)
где Λn магнитная проводимость зазора отлипания.
Rδ – магнитное сопротивление магнитного зазора.
Rδ=1/Λδ (3.7.4)
где Λδ магнитная проводимость рабочего зазора.
Rs магнитное сопротивление рассеяния.
где λs магнитная удельная проводимость.
Тогда индуктивность обмотки:
(7.7.6)
Величина тока при соответствующем зазоре:
(7.7.7)
Расчет ведется для номинального и минимального напряжений.
Производная индуктивности определяется через приращение индуктивности и зазора:
(3.7.8)
q |
0,006 |
0,0055 |
0,005 |
0,0045 |
0,004 |
0,0035 |
0,003 |
0,0025 |
0,002 |
0,0015 |
L |
0,59164 |
0,6111 |
0,63415 |
0,66151 |
0,69462 |
0,73571 |
0,78838 |
0,85881 |
0,95992 |
1,11451 |
Λn∙10-6 |
3,71161 |
3,71281 |
3,71412 |
3,71553 |
3,71707 |
3,71876 |
3,72061 |
3,72265 |
3,72491 |
3,72747 |
Λδ∙10-7 |
1,54061 |
1,60921 |
1,68991 |
1,78667 |
1,90511 |
2,05376 |
2,24756 |
2,51207 |
2,90032 |
3,53322 |
Imin |
0,95151 |
0,92427 |
0,89292 |
0,86022 |
0,82255 |
0,77998 |
0,73126 |
0,67462 |
0,60743 |
0,52561 |
Iном |
1,11942 |
1,08738 |
1,05165 |
1,01203 |
0,96771 |
0,91762 |
0,86031 |
0,79367 |
0,71462 |
0,61835 |
Pmin |
16,5789 |
18,1341 |
19,9641 |
22,1436 |
24,7824 |
28,0439 |
32,1729 |
37,5552 |
44,8297 |
56,1143 |
Pном |
22,9466 |
25,0991 |
27,632 |
30,6485 |
34,3009 |
38,8151 |
44,5299 |
51,9795 |
62,0481 |
76,2828 |
Заключение
В данном курсовом проекте был рассмотрен наиболее широко распространенный элемент электрических аппаратов, обеспечивающий их надежное функционирование – Ш–образный электромагнит, а именно для автоматического выключателя.
Электромагнитные устройства входят в состав значительной части коммутационных аппаратов (особенно низкого напряжения), реле, устройств дистанционного управления, тормозных и подъемных устройств, автоматических выключателей и др. Поэтому вопросы расчета и проектирования, обеспечивающие надежность и экономичность их работы, являются актуальной задачей. Однако при кажущейся простоте конструкции полный учет всех факторов, влияющих на работу электромагнита в аналитической форме, приемлемой для инженерных расчетов, встречает затруднения в связи со сложностью электромагнитных и тепловых процессов в элементах аппарата.
Были приведены общие сведения об автоматических выключателях их классификация, как они распределяются
– по типам отключения тока,
– по типам исполнения,
– по типам привода.
Также рассмотрена принципиальная схема автоматического выключателя, конструкция автоматического выключателя, принцип его действия.
В третей части курсового проекта были изложены расчеты Ш–образного электромагнита, а именно:
– расчет сечения магнитопровода;
– расчет размеров К.З. витка;
– предварительный расчет размеров обмотки и магнитопровода;
– уточненный расчет обмотки при притянутом якоре;
– проверка отсутствия вибрации якоря;
– температура стали и К.З. витков.
Список литературы
1. Чунихин А.А. «Электрические аппараты высокого напряжения. Выключатели» Т. 1 – 3: Справочник. – М.: Информэлектро, 1996, 1997.
2. Таев И.С. «Электрические аппараты управления» – 2-е изд. – М.: Энергоатомиздат, 1984.