Проектирование системы электроснабжения для жилого массива

1.3 РАСЧЕТ ЭЛЕКТРИЧЕСКОЙ СЕТИ


1.3.1 ВЫБОР ЧИСЛА И МОЩНОСТИ ТРАНСФОРМАТОРОВ

Основным критерием выбора оптимальной мощности трансформаторов являются: экономические соображения, обеспечивающие минимум приведённых затрат, условия нагрева, зависящие от температуры, коэффициента начальной загрузки, длительности максимума.

От правильного размещения подстанций на территории массовой жилой застройки города, а также числа подстанций и мощности трансформаторов, установленных в каждой подстанции, зависят экономические показатели и надежность системы электроснабжения потребителей. Трансформаторные подстанции следует приблизить к центру питаемых ими групп потребителей, так как при этом сокращается протяжонность низковольтных сетей, снижаются сечения проводов и жил кабелей, а это приводит к значительной экономии цветных металлов и снижению потерь энергии. Снижаются также капитальные затраты на сооружение сетей. Поэтому система с мелкими подстанциями (мощность отдельных трансформаторов обычно не превышает 1000 кВА при вторичном напряжении сети 0,4/0,23 кВ) оказывается выгодной и применяется повсеместно [ 5 ].

Количество силовых трансформаторов на трансформаторной подстанции зависит от категории нагрузки по степени бесперебойности электроснабжения. Основная часть потребителей электроэнергии относится к 2-й категории по надёжности электроснабжения. Часть потребителей электроэнергии относятся к потребителям 3-й категории.

Принимается двухтрансформаторная КТП с использованием масляных трансформаторов.

Мощность каждого трансформатора должна быть такой, чтобы при отключении одного из трансформаторов оставшейся в работе обеспечивал электроэнергией потребителей 1 и 2 категорий. За основу выбора берётся перегрузочная способность трансформаторов. Обычно в практике проектирования пользуются перегрузочной способностью для потребителей, работающих по двухсменному режиму раборы, а жилые районы можно отнести к таким режимам работы, так как днем загруженность заключается в работающих магазинах, школах, детских садах и т. д., а вечером в жилых домах. Перегрузочная способность заключается в следующем: при выходе из строя одного из трансформаторов второй трансформатор может нести перегрузку величиной 40% в течении 6-и часов в сутки 5 рабочих дней недели.

Выбор трансформаторов будем производить на примере трансформаторной подстанци № 1 (ТП–1), остальные расчеты аналогичны, результаты расчетов сводим в таблицу 1.11.


Мощность трансформатора определяется по формуле:


   Sнагр.

Sтр. =                                                                              (1.10.)

   Кз. * n


где, Sнагр. – расчетная мощность нагрузки ТП.

n – количество трансформаторов на подстанции. n = 2

Кз. – коэффициент загрузки трансформатора. Кз. = 0.7


             606.99

 Sтр. =                  = 433.56кВА

               0,7*2


Выбираем ближайшый больший по мощности трансформатор:

ТМ-630/10

Sном =630кВА

ΔРхх=1.3кВт.

ΔРкз=7.8 кВт.

Uкз = 5.5%

Iхх =2%

Проверяем перегрузочную способность трансформаторов в аварийном режиме: 1,4 * Sномт ≥ Sp


1,4 * 630 = 882 > 606


Условие выполняется.


Таблица 1.10.

Выбор трансформаторов

№ п/п

Т.П.

Трансформатор

Sном., кВА

ΔPх.х, кВт

ΔPк.з., кВт

Uк.з., %

Iх.х., %

1

ТП – 1

Т1.1. TM- 630/10

630

1.3

7.6

5,5

2

2

ТП – 1

Т1.2.TM- 630/10

630

1.3

7.6

5,5

2

3

ТП – 2

Т2.1. ТМ-630/10

630

1.3

7.6

5,5

2

4

ТП – 2

Т2.2. ТМ-630/10

630

1.3

7,6

5,5

2

5

ТП – 3

Т3.1. ТМ-400/10

400

0.95

5.5

4.5

2.1

6

ТП – 3

Т3.2. ТМ-400/10

400

0.95

5.5

4.5

2.1

7

ТП – 4

Т4.1. ТМ-630/10

630

1.3

7.6

5,5

2

8

ТП – 4

Т4.2. ТМ-630/10

630

1.3

7.6

5,5

2

9

ТП – 5

Т5.1. ТМ-400/10

400

0.95

5.5

4.5

2.1

10

ТП – 5

Т5.2. ТМ-400/10

400

0.95

5.5

4.5

2.1

11

ТП – 6

Т6.1. ТМ-400/10

400

0.95

5.5

4.5

2.1

12

ТП – 6

Т6.2. ТМ-400/10

400

0.95

5.5

4.5

2.1

13

ТП – 7

Т7.1. ТМ-630/10

630

1.3

7.6

5,5

2

14

ТП – 7

Т7.2. ТМ-630/10

630

1.3

7.6

5,5

2

15

ТП – 8

Т8.1. ТМ-630/10

630

1.3

7.6

5,5

2

16

ТП – 8

Т8.2. ТМ-630/10

630

1.3

7.6

5,5

2


1.3.2 РАСЧЕТ СЕЧЕНИЯ ЛЭП

Критерием расчета сечения линий электропередачи является:

1. длительно допустимый ток Iдоп;

2 экономическая плотность тока Iэк;

3. допустимая потеря напряжения.

В сетях выше 1000 В расчёт сечений ведётся по первым двум условиям, а в сетях до 1000 В расчётным условием является – длительно допустимый ток и допустимая потеря напряжения.


Рассчитываем значение тока:

                Sрасч. * Ко

 Iрасч. =                                                                                      (1.11.)

                √3 *Uв. н.


Где: Sрасч. – мощность всех подстанций кольца.

Ко – коэффициент одновременности для электрических нагрузок в сетях 6 – 20 кВ учитывающий количество ТП [8].


                     3361.1

Iрасч.L1. =                        = 194.3А

                   √ 3 * 10


Все проводники электрической сети проверяют по допустимому нагреву током нагрузки Для выбора сечений и проверки проводов и кабелей пользуются таблицами приведёнными в ПУЭ. Для этого сопоставляют расчетные токи элементов сети с длительно допустимыми токами, приведёнными в таблицах для проводов и кабелей. Необходимо выдержать соотношение


Iрасч. ≤ Iдоп.

где: Iрасч. – расчетный ток нагрузки, А;

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать