Расчет и проектирование воздушных линий электропередач

, (4.12)


·10-3=6,7·10-3;

·10-3=15,3·10-3.

Удельная нагрузка на провод от давления ветра и веса провода, покрытого гололедом, даН/(м∙мм2),


 (4.13)


=8,5·10-3;

=24,6·10-3.


4.3 Расчет критических пролетов


Первый критический пролет, м,


, (4.14)

где Е – модуль упругости, даН/мм2;

α – температурный коэффициент линейного удлинения материала провода, град-1;

lk1=.

Выражение под корнем меньше нуля. Первый критический пролет – мнимый.

Второй критический пролет, м,


, (4.15)


где tгол – температура гололеда, равная -5ºС;

γmax=γ7;

=80,4.

Третий критический пролет, м,


, (4.16)


=144,2.

В результате получается следующее соотношение критических пролетов и расчетного пролета: lк1 – мнимый, lр=202,5 м>lк3=144,2 м.

На основании полученных соотношений определяется исходный режим. Это режим максимальной нагрузки с параметрами: σ=[σγ.max]=13,0 даН/мм2, γ=γmax=8,5·10-3 даН/(м·мм2), t=tгол=-5°С.


4.4 Расчет напряжений в проводе


По уравнению состояния провода рассчитываются напряжения в проводе для режимов среднегодовой температуры – σtср, режима низшей температуры – σtmin и наибольшей нагрузки – σγmax.

Расчет напряжения в проводе для режима низшей температуры. В уравнение состояния провода подставляются все известные параметры.


, (4.17)


.

Полученное уравнение приводится к виду:



Решение полученного уравнения выполняется итерационным методом касательных. В качестве нулевого приближения принимается значение σ0=10 даН/мм2.

Производная полученной функции y=:

y’=3·σ2tmin-2·7,766·σtmin

Определяется поправка на первой итерации:


Δ1=y(σ0)/y’(σ0),


=0,378.

Новое значение напряжения:


σ1=σ0-Δ1,


σ1=10-0,377=9,623.

Проверка итерационного процесса. Для этого задается точность расчета ε=0,01 даН/мм2.

0,377>0,01,

следовательно расчет нужно продолжить, приняв в качестве нового приближения σ=9,623.

Поправка на второй итерации:

=0,025.

Новое значение напряжения:

σ2=9,623-0,025=9,598.

Выполняется проверка:

0,025>0,01.

Поправка на третьей итерации:

=0,00013.

Проверка:

0,00013<0,01,

следовательно за искомое выражение σtmin принимаем σ3:

σtmin=9,598 даН/мм2.

Расчеты напряжений в проводе для режимов среднегодовой температуры и наибольшей нагрузки выполняются с помощью программы «MERA2». В результате получены следующие значения:

σtср=7,987 даН/мм2;

σγmax=12,517 даН/мм2.

Выполняется проверка условий механической прочности:

σtср≤[σtср], 7,987<8,7;

σtmin≤[σtmin], 9,598<13,0;

σγmax≤[σγmax], 12,517<13,0.

Условия выполняются, значит механическая прочность проводов будет достаточной для условий проектируемой линии.

По уравнению состояния провода выполняются расчеты напряжений для режимов гололеда без ветра –σгол, высшей температуры – σtmax, грозового режима – σгр. Результаты расчетов следующие:

σtmax=5,475 даН/мм2;

σгол=12,277 даН/мм2;

σгр=7,129 даН/мм2.


4.5 Определение стрелы провеса проводов и троса


Определяются стрелы провеса проводов в режиме гололеда без ветра, высшей температуры и грозовом режиме, м,


, (4.18)


=3,24;

=3,11;

=2,49.

Проверка соблюдения требуемых расстояний от низшей точки провисания провода до земли по условию:

f≤[f]=6,2;

ftmax=3,24<6,2;

fгол=3,11<6,2.

Условия выполняются, значит расстояние от провода до земли будет не менее габаритного размера.

Стрела провеса грозозащитного троса в грозовом режиме, м,


, (4.19)


=2,79.


4.6 Определение напряжений в тросе


Напряжение в тросе в грозовом режиме, даН/мм2,


, (4.20)


=14,7.

В качестве исходного принимается грозовой режим с параметрами: σтгр, γт1, t=15°C. По уравнению состояния провода определяются напряжения в тросе для режимов максимальной нагрузки, низшей и среднегодовой температуры.

Расчет напряжения в тросе для режима среднегодовой температуры. В уравнение состояния провода подставляются все известные параметры.

.

Полученное уравнение приводится к виду:


.


В качестве нулевого приближения принимается значение σ0=16 даН/мм2.

Производная полученной функции


y=:


y’=3·σт2tср-2·6,979·σтtср


Определяется поправка на первой итерации:


Δ1=y(σ0)/y’(σ0),


=0,225.

Новое значение напряжения:


σ1=σ0-Δ1,


σ1=16-0,225=15,775.

Проверка итерационного процесса, ε=0,01 даН/мм2.

0,225>0,01,

следовательно расчет нужно продолжить, приняв в качестве нового приближения σ=15,775

Поправка на второй итерации:

=0,003.

Проверка:

0,003<0,01,

следовательно за искомое выражение σтtср принимаем σ1:

σтtср=15,775 даН/мм2.

В результате расчетов остальных режимов получены следующие значения:

σтγmax=31,476 даН/мм2;

σтtmin=17,606 даН/мм2.

Проверка условий механической прочности троса:

σтγmax=31,476 даН/мм2≤ [σтγmax]=60 даН/мм2;

σтtmin=17,606 даН/мм2≤ [σтtmin]=60 даН/мм2;

σтtср=15,775 даН/мм2≤ [σтtср]=42 даН/мм2.

Условия выполняются, значит выбранный провод пригоден для условий проектируемой линии.

5 Выбор изоляторов и линейной арматуры


Тип изолятора выбирается по механической нагрузке с учетом коэффициента запаса прочности, который представляет собой отношение разрушающей электромеханической нагрузки к нормативной нагрузке на изолятор. Согласно ПУЭ, коэффициенты запаса прочности в режиме наибольшей нагрузки должны быть не менее 2,7, а в режиме среднегодовой температуры – не менее 5,0.

В нормальных режимах поддерживающая гирлянда изоляторов воспринимает осевую нагрузку, состоящую из веса провода, гололеда и веса самой гирлянды.

Нагрузка для изоляторов поддерживающих гирлянд, даН,

2,7·(Gг+Gи)≤ Gэм,

5,0·(Gп+Gи)≤Gэм, (5.1)

где Gг – нагрузка на изолятор от веса провода, покрытого гололедом, даН,


Gг=γ7·F·lвес, (5.2)


где lвес=280 м – длина весового пролета;

F – общее фактическое сечение провода, мм2;

Gи – нагрузка на изолятор от веса гирлянды, даН, предварительно Gи=50 даН;

Gп – нагрузка на изолятор от веса провода, даН,


Gп=γ1·F·lвес, (5.3)


Тогда

2,7·( γ7·F·lвес+ Gи)=2,7·(8,5·10-3·173,2·280+50)=1248;

5,0·( γ1·F·lвес+ Gи)=5,0·(3,46·10-3·173,2·280+50)=1089.

Выбирается изолятор с такой разрушающей электромеханической нагрузкой, чтобы выполнялись условия (5.1). Выбирается изолятор ПФ70-В с разрушающей электромеханической нагрузкой 7500 даН:

1248<7500;

1089<7500,

т.е. условия выполняются.

Определяется число изоляторов в поддерживающей гирлянде,


n≥, (5.4)


где λэф – нормированная удельная эффективная длина пути утечки. Для степени загрязненности атмосферы I λэф=13 мм/кВ;

Uнаиб=1,15·Uном;

lэф – эффективная длина пути утечки, мм,

lэф=lут/k, (5.5)

где lут =355 мм для выбранного изолятора;

k – поправочный коэффициент,


k=, (5.6)


где D – диаметр тарелки изолятора, D=270 мм;

k==1,157;

lэф=355/1,157=306,8;

n≥=5,4.

Полученное значение округляется до шести и увеличивается на один. В итоге число изоляторов в поддерживающей гирлянде равно семи.

При выборе изоляторов натяжных гирлянд в условия (5.1) добавляется величина тяжения провода.

Нагрузка на изолятор натяжной гирлянды, даН,




, (5.7)


=5894,

=6949.

Выбирается изолятор ПФ70-В с разрушающей электромеханической нагрузкой 7500 даН:

5894<7500;

6949<7500,

т.е. условия выполняются.

Число изоляторов в натяжной гирлянде принимается на один больше, чем в поддерживающей, т.е. восемь штук. Выбор арматуры аналогичен выбору изоляторов. Коэффициент запаса прочности для условий гололеда должен быть не менее 2,5. Нагрузка на арматуру поддерживающей гирлянды, даН,

2,5·(Gг+Gи)≤ Gр, (5.8)

2,5·(8,5·10-3·173,2·280+50)=1156.

Выбирается узел крепления гирлянды к траверсе опоры КГП-7-1, серьгу СР-7-16, ушко У1-7-16 с разрушающей минимальной нагрузкой 70 кН; глухой поддерживающий зажим ПГН-3-5 с минимальной разрушающей нагрузкой 25 кН.

Нагрузка на арматуру натяжной гирлянды, даН,


, (5.9)


=5457.

Для натяжной гирлянды выбирается та же арматура что и для поддерживающей. Для натяжной гирлянды выбираем болтовой зажим.

Изолятор и линейная арматура изображены на рисунках 5.1-5.5.


Рисунок 5.1 – Изолятор ПФ70-В


Рисунок 5.2 – Узел крепления КГП-7-1

D=16 мм; А=17 мм; d=16 мм; L=80 мм; Н1=32 мм; Н=82 мм


Рисунок 5.3 – Зажим поддерживающий ПГН-3-5


L=220 мм; А=20 мм; Н=66 мм


Рисунок 5.4 – Серьга СР-7-16


D=17 мм; d=16 мм; А=65 мм; b=16 мм


Рисунок 5.5 – Ушко У1-7-16

D=17 мм;D1=19,2 мм; b=16 мм; Н=104 мм

Фактический вес поддерживающей гирлянды, даН,


, (5.10)


где Gиз – вес одного изолятора, даН;

Gарм – суммарный вес элементов арматуры, даН;

=37,81.

Фактическая длина поддерживающей гирлянды, м,


, (5.11)


где Низ – высота одного изолятора, м;

Нарм – суммарная высота элементов арматуры, м;

=1,339.

Получили λгир.ф =1,339 больше, чем принятое в расчетах λ=1,3.

Проверка соблюдения габарита.

Пересчитанная допустимая стрела провеса, м,


,


=6,161.

Проверка соблюдения требуемых расстояний от низшей точки провисания провода до земли по условию:

f≤[f]=6,161,

ftmax=3,24<6,161.

Условие соблюдается, т.е. такая длина гирлянды допустима.

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать