Расчет и проектирование воздушных линий электропередач

Защита от вибрации осуществляется с помощью гасителей вибрации, представляющих собой два груза, закрепленных на стальном тросике (рисунок 5.6).








Рисунок 5.6 – Гаситель вибрации ГПГ-1,6-11-400/21


d=11 мм; 2R=21 мм; L=400 мм; H=78 мм

Выбор гасителя вибрации осуществляется с учетом марки и сечения провода. Выбирается гаситель вибрации ГПГ-1,6-11-400/21. Для грозозащитного троса гаситель вибрации не требуется, так как σтtср<18,0 даН/мм2.

Расстояние от зажима до места крепления виброгасителя, мм,


, (5.12)


где d – диаметр провода, мм;

Gп – вес одного метра провода, даН;

=1067,4 мм≈1,07 м.

6 Расстановка опор по профилю трассы

 

6.1 Построение шаблона


На заданном профиле трассы расстановка опор производится с помощью специальных шаблонов. Шаблон представляет собой три кривые провисания провода, сдвинутые относительно друг друга, построенные в виде парабол для режима, при котором возникает наибольшая стрела провеса. В п. 4.5 была определена максимальная стрела провеса, которая соответствует режиму максимальной температуры, fmax=3,24 м.

Кривая 1 – кривая провисания нижнего провода – строится на основе формулы стрелы провеса:


, (6.1)


где γfmax, σfmax – удельная нагрузка и напряжение в проводе в режиме, отвечающем наибольшей стреле провеса. Данная формула представляется в виде уравнения:


y=a·x2, (6.2)


где

 ; a=.


Для режима максимальной температуры уравнение примет вид:

,

Для построения кривой 1 в 1-ом квадранте выполняется несколько расчетов, представленных в виде таблицы 6.1.


Таблица 6.1 – Построение кривой 1

l

0

50

100

150

202,5

x

0

25

50

75

101,

y

0

0,27

0,79

1,78

3,24


Кривая 2, называемая габаритной, сдвинута о вертикали вниз от кривой 1 на расстояние требуемого габарита от земли Г=6 м. Кривая 3 – земляная – сдвинута от кривой 1 вниз на расстояние h2-λгир.ф=13,5-1,339=12,161 м (рисунок 6.1).


Рисунок 6.1 – Построение шаблона


Шаблон накладывают на профиль трассы так, чтобы кривая 3 пересекала профиль в месте установки первой анкерной опоры, а кривая 2 касалась его, при этом ось у должна быть строго вертикальной. Тогда другая точка пересечения кривой 3 с профилем будет соответствовать месту установки первой промежуточной опоры. При таком положении шаблона во всех точках пролета габарит будет не меньше допустимого. Аналогично находится место установки второй промежуточной опоры и т.д.

После монтажа анкерного участка в проводах происходит выравнивание напряжения, которое соответствует какому-то условному пролету. Этот пролет называется условным, и его длина, м, определяется из выражения:


, (6.3)


где li – фактическая длина i-го пролета в анкерном участке, м;

n – количество пролетов в анкерном участке;


=166.

В результате расчетов получили что lпр отличается от lр на

∙100%=18%,

что больше допустимых 5%. В таком случае заново проводится механический расчет, построение шаблона и расстановка опор на трассе. Для данного курсового проекта допускается изменить расстановку опор без проведения повторного механического расчета.

Построение нового шаблона.

,

Для построения кривой 1 в 1-ом квадранте выполняется несколько расчетов.


Таблица 6.2 – Построение кривой 1

l

0

50

100

166

x

0

25

50

83

y

0

0,27

0,79

2,18


Новая расстановка опор показана на рисунке 6.3.

Приведенный пролет, м,

=132

Проверка:

∙100%=20%.

В результате повторного расчета разница между приведенным и расчетным пролетом снова велика. Расчет повторяется до тех пор пока разница между значениями пролетов будет не более 5%.


6.2 Проверка опор на прочность


При расстановке опор по профилю трассы все они должны быть проверены на прочность в реальных условиях. Проверка выполняется сопоставлением вычисленных для каждой опоры весового и ветрового пролетов со значениями этих пролетов, указанных в технических характеристиках опоры.

Весовой пролет, м,


, (6.4)


где эквивалентные пролеты вычисляются по формулам:

-первый (большой) эквивалентный пролет, м,


, (6.5)


-второй (малый) эквивалентный пролет, м,


, (6.6),


где l – действительная длина пролета, м;

Δh – разность между высотами точек подвеса провода, м;

Смежными эквивалентными пролетами, прилегающими к опоре, могут быть и два больших или два малых эквивалентных пролета. Тогда выражение (6.4) будет иметь вид:


;


или


.


Ветровой пролет, м,


. (6.7)


Расчет для второй опоры.

=108,4;

=206,9;

=157,6;

=141,0.

Для остальных опор расчет сводится в таблицу 6.2.


Таблица 6.2 – Проверка опор на прочность

№ опоры i

l'эi-1, м

l”эi-1, м

l’эi, м

l”эi, м

Δhi-1, м

Δhi, м

lвес, м

lветр, м

1

2

3

4

5

6

7

-

-

-

-

204,3

-

-

184,3

108,4

43,1

168,0

-

104,6

148,7

205,6

206,9

200,0

-

189,4

173,3

165,0

-

-

-

143,7

-

-

-

0,55

2,23

2,99

0,86

1,54

1,82

0,58

2,23

2,99

0,86

1,54

1,82

0,58

0,41

194,9

157,6

121,5

155,8

196,8

138,9

156,8

175,5

141,0

154,5

179,0

160,5

154,0

158,5


Таким образом, для каждой опоры выполняются условия


7 Расчет монтажных стрел провеса провода и троса


Определяется исходный режим из соотношений трех критических пролетов и приведенного пролета: lк1 – мнимый, lпр=166 м>lк3=144,2 м.

На основании полученных соотношений определяется исходный режим. Это режим максимальной нагрузки с параметрами: σи=[σγ.max]=13,0 даН/мм2, γи=γmax=8,5·10-3 даН/(м·мм2), tи=tгол=-5°С.

Расчет напряжения при монтаже осуществляется с помощью уравнения


. (7.1)


Стрела провеса провода в интересующем пролете lф, м, определяется из выражения


, (7.2).


Тяжение провода, даН, рассчитывается по формуле


, (7.3)


С помощью уравнения состояния рассчитывается напряжение в проводе при температуре монтажа tmax=40°C и tmin=-10°C.

при tmax=40°C:

.

Полученное уравнение приводится к виду:

.

=5,53 даН/мм2.

Тяжение в проводе, даН,


,


=957,8.

при tmin=-10°C:

.

Полученное уравнение приводится к виду:


.


=10,74 даН/мм2.

Тяжение в проводе, даН,

=1860,2 даН.

Для наибольшего пролета lmax=194 м и наименьшего пролета lmin=125 м по формуле (7.2) рассчитываются стрелы провеса при максимальной и минимальной температурах, м,

lmax=194 м

=2,94;

=1,52;

lmin=125 м

=1,22;

=0,63.

Расчет при других температурах выполняется аналогично, результаты заносятся в таблицу 7.1.

Стрела провеса провода в габаритном пролете при температуре 15°С, м,


, (7.4)


=2,84.

Исходные данные для троса: σтгр=14,7 даН/мм2, γт1=8·10-3 даН/(м·мм2), t=15°C.

Стрела провеса троса в габаритном пролете в режиме грозы исходя из требуемого расстояния z для габаритного пролета, м,


, (7.5)


=3,104.

Определяется величина напряжения в тросе по известной величине fтгр, даН/мм2,


, (7.6)


=16,3.

Определяются напряжения в тросе при температуре монтажа из уравнения состояния, принимая в качестве исходного грозовой режим.


, (7.7)


Для наибольшего пролета lmax=194 м и наименьшего пролета lmin=125 м рассчитываются стрелы провеса троса, м,


, (7.8)


, (7.9)


Тяжение в тросе, даН,


, (7.10)


Расчет для температуры -10°С.

Полученное уравнение приводится к виду:


.


=20,33 даН/мм2.

Тяжение в тросе, даН,

=988 даН.

Стрела провеса при lmax=194 м, м,

=1,85.

Стрела провеса при lmin=125 м, м,

=0,77.

Расчет при других температурах выполняется аналогично, результаты заносятся в таблицу 7.2.


Таблица 7.1 – Монтажная таблица провода

Температура, °С

Напряжение, даН/мм2

Тяжение, даН

Стрела провеса в пролете длиной, м

l=194

l=125

-10

0

10

15

20

30

40

10,74

9,42

8,24

7,70

7,19

6,28

5,53

1860,2

1631,5

1427,2

1333,6

1245,3

1087,7

957,8

1,52

1,73

1,97

2,11

2,26

2,59

2,94

0,63

0,72

0,82

0,88

0,94

1,08

1,22


Таблица 7.2 – Монтажная таблица троса

Температура, °С

Напряжение, даН/мм2

Тяжение, даН

Стрела провеса в пролете длиной, м

194 м

125 м

-10

0

10

20

30

40

20,33

18,61

17,03

15,60

14,33

13,20

988,0

904,4

827,7

758,2

696,4

641,5

1,85

2,02

2,21

2,41

2,63

2,85

0,77

0,84

0,92

1,00

1,09

1,18


Монтажные графики для провода и троса изображены на рисунках 7.1 и 7.2.


Рисунок 7.1 – Монтажные графики для провода


Рисунок 7.2 – Монтажные графики для троса

Заключение


В данном курсовом проекте были рассмотрены основные этапы проектирования механической части воздушных ЛЭП: выполнены выбор промежуточных опор, механический расчет проводов и грозозащитного троса, выбор линейной арматуры, произведены расстановка опор по профилю трассы и расчет монтажных стрел провеса.

В ходе выполнения данного курсового проекта получены навыки пользования справочными материалами и нормативными документами, а также навыки выполнения самостоятельных инженерных расчетов с привлечением прикладного программного обеспечения персональных компьютеров.


Список литературы


1. Правила устройства электроустановок. – СПб.: Издательство ДЕАН, 2001. – 928 с.

2. Проектирование механической части воздушных ЛЭП. Учебное пособие по курсовому и дипломному проектированию. – Киров, 2004.-99 с.


Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать