, |
(4.1) |
где – ток замыкания на землю, А.
.
Следовательно, сопротивление заземляющего устройства не должно превышать 10 Ом.
Для выполнения заземления вокруг здания ЦРП выполняется наружный контур размерами 27х17м, состоящий из стальной шины Æ18 мм, прокладываемой в траншее на глубине 0,5 м и вертикальных электродов Æ18 мм, забиваемых на глубину до 6 м.
Сопротивление искусственного заземлителя при отсутствии естественного заземлителя принимаем равным допустимому сопротивлению заземляющего устройства Ом.
Определим расчетные удельные сопротивления грунта для горизонтальных и вертикальных заземлителей
, , |
(4.1) |
где – удельное сопротивление грунта, ;
и – повышающие коэффициенты для вертикальных и горизонтальных электродов, для климатической зоны 3 по табл. 12.2 [15].
,
.
Сопротивление растеканию одного вертикального электрода стержневого типа определяем по формуле из табл. 12.3 [15]
, |
(4.2) |
где l – длинна вертикального электрода, м;
d – диаметр вертикального электрода, м;
t – глубина заложения вертикального электрода, м.
м.
.
Определяем примерное число вертикальных заземлителей при предварительно принятом по табл. 12.4 [15] коэффициенте использования (отношение расстояния между электродами к их длине равно 1, ориентировочное число вертикальных электродов в соответствии с планом объекта составляет 20)
. |
(4.3) |
.
Определим расчетное сопротивление растеканию горизонтальных электродов по формуле из табл. 12.3 [15]
. |
(4.4) |
.
Уточняем необходимое сопротивление вертикальных электродов
. |
(4.5) |
Ом.
Определяем число вертикальных электродов при коэффициенте использования по табл. 12.4 [15]
. |
(4.6) |
.
Принимаем к установке 21 вертикальных электрод, распложенных по контуру расположенного на расстоянии 1 м от фундамента здания ЦРП. Эскиз заземлителя представлен на рисунке 4.1.
Рисунок 4.1 – Эскиз заземлителя распределительной подстанции 10 кВ.
На основании схем автоматизации электроснабжения КС-10 и КС «Ухтинская» была разработана общая схема автоматизации всего энергоснабжения двух КС. На выносном листе 1 показана структурная схема автоматизированной системы управления энергохозяйством, эта система объединила в себе отдельные локальные системы: АСУ-ЭС, САУ-В, САУ-Т, САУ-КОС. Объединение происходит на верхнем уровне, т.е. на уровне диспетчерских или рабочих станций (АРМ) каждой из подсистем. Делается это объединение для двух целей, первая – для согласования работы отдельных подсистем, быстрого и оперативного управления системой энергоснабжения, поддержание ее работоспособности и обеспечение непрерывного снабжения основного производства энергоресурсами. Вторая цель это использование АСУ-Э в качестве источника информации для более глобальной системы, так называемой ИУС-Э (информационно-управляющей системы энергообеспечения). ИУС-Э занимается контролем и анализом в целом всей системы энергоснабжения, решает задачи организации и планирования. Система ИУС-Э функционально распределена по уровням отраслевой системы диспетчерского управления. На уровне предприятия «Севергазпром» функции ИУС-Э следующие: планирование потребности предприятия в энергоресурсах и анализ их потребления; планирование и контроль капитального строительства, модернизации, реконструкции, капремонта энергетического оборудования; контроль за устранением аварий; формирование баз данных; информационное обеспечение производства.
Объединение двух отдельных автоматизированных систем для КС-10 и КС «Ухтинская» и их составных частей, осуществляется по верхнему уровню через локальные сети диспетчерских. В дипломном проекте верхний уровень АСУ-Э организован на основе сети Ethernet, это связано с тем, что данный стандарт получил широкое применение в построении сетей используемых для разных целей. Главная причина использования Ethernet заключается в том, что это стандарт несложный в эксплуатации, с относительно недорогими компонентами. Так как Ethernet сейчас самая популярная и широко используемая сетевая технология, то, как внедрять и применять ее, знают очень многие.
Для выполнения поставленных задач АСУ-Э необходимо двенадцать автоматизированных рабочих мест, семь базовых систем. Соединение компьютеров АРМов и базовых систем осуществляется по топологии звезда. Для связи между диспетчерскими используется сетевой мост RAD Tiny Bridge, в котором в качестве линии связи используется оптоволоконный кабель.
Предусмотрена интеграция АСУ-Э с АСУ-ТП через шлюзовой компьютер, установленный в диспетчерской N1 АСУ-Э. Интеграция с ИУС-Э осуществляется по телефонной связи через модем установленного на АРМе главного оператора.
В дипломном проекте была разработана система АСУ-ЭС для КС-10 удовлетворяющая требованиям, предъявляемым к системам такого рода, а именно требование быстродействия, помехозащищенности и масштабируемости.
Быстродействие системы обеспечивается благодаря применению интеллектуальных устройств, таких как контроллеров RTU-211 и цифровых блоков защит Sepam 2000, они имеют высокую скорость сбора и обработки информации (скорость опроса дискретных сигналов 1 мс, аналоговой, для реле Sepam 2000 – 1,67 мс, для RTU-211 – 0,3 мc). Причем благодаря установке блоков сбора данных непосредственно в самом объекте (ЦРП, КТП) нет необходимости передавать по каналу связи между нижним и верхним уровнем всю информацию, а передавать лишь изменения измеряемых параметров. Для обеспечения быстродействия скорость передачи данных выбирается 9600 бит/с. Объем автоматизации электроснабжения КС-10 следующий: 1007 – дискретных сигналов, 530 – аналоговых, но в основном именно от скорости передачи информации зависит загрузка системы, а не от числа точек учета (объема контролируемых параметров). Причем основной объем передаваемых данных это оцифрованные аналоговые сигналы измеряемых токов, напряжений, мощности и т.д. Поэтому загрузка системы будет зависеть от настройки зоны нечувствительности измеряемых параметров.
Связь нижнего уровня АСУ с базовым компьютером осуществляется по оптическим каналам связи, которые позволяют устранить влияние электромагнитных полей на входы устройств нижнего и верхнего уровней.
Для технического учета электрической энергии используются вычисляемые значения активной и реактивной мощности на каждой отходящей линии ЦРП-10 кВ в реле Sepam 2000.
В связи с тем, что для надежности системы электроснабжения планируется строительство ЦРП-10 кВ, на площадке КС-10 изменяется схема электроснабжения. Все КТП-10/0,4 кВ расположенные на промпощадке будут запитываться от ЦРП-10 кВ. ЦРП будет получать питание от двух вводов главной понизительной подстанции 110/35/10 кВ от ЗРУ-10 кВ. Поэтому для коммерческого учета электроэнергии достаточно установить в ЗРУ-10 кВ ГПП два счетчика на отходящих ячейках в ЦРП.
Эффект от внедрения АСУ-ЭС на КС-10 достигается за счет предотвращения ущерба от перерывов электроснабжения при авариях, так как благодаря применению средств автоматизации уменьшается время на отыскание причин аварий и времени на их ликвидацию. Рассчитанный эффект составляет 1,47 милл. руб. в год. Кроме этого применение автоматизации электроснабжения дает ряд других неявных эффектов. Благодаря автоматическому техническому учету, появляется возможность рационального использования электрической энергии, а также выявление «невидимых» потерь и непроизводственных расходов. Диспетчеризация управления энергообъектами с помощью АСУ электроснабжения дает экономию потребляемой электроэнергии за счет автоматического контроля и правильного планирования максимума нагрузки. Автоматическое диагностирование режимов работы оборудования, отслеживание выработки ресурса и соответственно своевременность ремонтных работ, ведет к увеличению срока службы оборудования, снижению аварийности и затрат на ремонтные работы. Снижение потерь от повреждения оборудования за счет предупреждения аварийных ситуаций.
1. Основные положения по автоматизации объектов энергообеспечения ОАО «Газпром» – М.: Газавтоматика, 2001. – 77 с.
2. Автоматизация компрессорных станций магистральных газороводов. – Киев: Техника, 1990. – 128 с.
3. Чернобровов Н. В. Релейная защита. Учебное пособие для техникумов. – М.: Энергия, 1974. – 689 с.
4. Берман Р. Я. Автоматизация систем управления магистральными газопроводами. – Л.: Недра, 1978. – 159 с.
5. Камнев В. Н. Чтение схем и чертежей электроустановок. – М.: Высш. шк., 1986. – 144 с.
6. Усатенко С.Т., Каченюк Т.К., Терехова М.В. Выполнение электрических схем по ЕСКД. Справочник. – М.: Издательство стандартов, 1989. – 325 с.
7. Федоров А.А., Старкова Л.Е. Учебное пособие для курсового и дипломного проектирования по электроснабжению промышленных предприятий. Учебное пособие для вузов. – М.: Энергоатомиздат, 1987. – 368 с.
8. Справочник по проектированию электрических сетей и электрооборудования / Под ред. Барыбина Ю.Г. и др. – М.: Энергоатомиздат, 1991. – 464 с.
9. Ристхейн Э.М. Электроснабжение промышленных установок. Учебник для вузов. – М.: Энергоатомиздат, 1991. – 424 с.
10. Строительные нормы и правила РФ ФЕРм 81-03-11-2003. Сборник N 11 "Приборы, средства автоматизации и вычислительной техники".
11. Ценник на пусконаладочные работы № 2 Автоматизированные системы управления 1984-01-01.
12. Шабад М.А. Автоматизация распределительных электрических сетей с цифровыми реле. – М.: НТФ Энергопрогресс, 2000. – 58 с.
13. Меньшов Б.Г., Беляев А.В., Ящерицын В.Н. Электроснабжение газотурбинных компрессорных станций магистральных газопроводов. – М.: Недра, 1985. – 163 с.
14. Автоматизация диспетчерского управления в электроэнергетике/ Под общей ред. Ю.Н. Руденко и В.А Семенова. – М.: Издательство МЭИ, 2000. – 648 с.
15. Федеральный закон от 17.07.1999 № 181-ФЗ «Об основах охраны труда в Российской Федерации».
16. Федоров А. А., Каменева В. В. Основы электроснабжения промышленных предприятий: Учебник для вузов. – 4-е изд., перераб. и доп. – М.: Энергоатомиздат, 1984. – 472 с.
17. Правила устройства электроустановок (ПУЭ). Издание седьмое. Утв. приказом Минэнерго России от 08.07.2002 № 204. – Вестник Госэнергонадзора, № 3, 2002.
Характеристики электронных плат контроллера RTU-211
1. Плата центрального процессора 23CP61
Микроконтроллер и память (Процессор шины)
Микроконтроллер с 8 кб внутренней памяти
для хранения программ: 87C32
Тактовая частота: 11.0592МГц
Размер ОЗУ (внутреннего): 256 байт
Микропроцессор и память (центральный процессор)
Микропроцессор:80С186
Тактовая частота:8.0 МГц
Размер ОЗУ: 256 кбайт
Размер флэш-памяти:512 кбайт
Последовательные интерфейсы
Количество последовательных интерфейсов: |
4 |
Уровни интерфейса для всех последовательных каналов: |
RS485 |
Скорость передачи для порта NFK, CPA: |
50-19200 бод |
Скорость передачи для порта MMI: |
9600 бод (строго) |
Скорость передачи для порта PRN: |
50-9600 бод |
Формат данных при передаче по последовательным: каналам (NFK,MMI,CPA) |
8 бит, проверка на четность,1 стоп-бит |
2. Плата цифрового ввода 23BI60R5
Количество каналов:16
Тип входов напряжения: Активные сигналы
Соединительных зажимов на канал:2
Развязка каналов через оптрон: Да
Диапазоны сигналов: 110 -230 В постоянного тока
Максимально допустимое входное перенапряжение: МЭК 870-3 Класс 3 (от номинального диапазона)+200 % (1 секунда)+125 % (1 минута)
Входные токи для обоих диапазонов: МЭК 870-3 Класс 1 (номинальное значение) 3-5 мА
3. Промежуточная релейная плата 23RL60
Количество выходных командных реле: 8
Поперечное сечение соединительных зажимов: 2.5 мм2
Индикаторные светодиоды на каждый выход: Да
Развязка между выходными реле: Да
Развязка между выходными реле и электроникой: Да
Время срабатывания командных реле (максимум): 10 мс
Время отпускания командных реле (максимум): 5 мс
Максимальная нагрузка на контакты 220 В пост. тока: 1 А
4. Трехфазный преобразователь измерений переменного тока 23DP61R1
Точность преобразователя
Значения запоминающего устройства: 1.0 % полного масштаба
Активная, реактивная и полная мощность, коэффициент мощности: 2.0 % полного масштаба
Частота: 0.5 %
Счетчики энергии: 2.0 %
Диапазоны измерений преобразователя
Напряжение трех фаз, версия R0001:3 x 230 В (50 Гц)
Напряжение нулевой последовательности:0 – 230 В (50 Гц)
Ток трех фаз:3 x 5 A
Ток нулевой последовательности:1 x 5 A
Обновление измеряемых параметров
Напряжение, ток, мощность, реактивная мощность и частота вычисляется при 50/60 Гц и обновляются каждые 2 секунды.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19