Разработка ветроэнергетической установки

В электрическую часть силового канала входят устройства электрический преобразователь ЭП, передающие электрическую энергию от источника питания (шин промышленной электрической сети, автономного электрического генератора, аккумуляторной батареи и т. п.) к электромеханическому преобразователю ЭМП и обратно и осуществляющие, если это нужно, преобразование электрической энергии.

Механическая часть состоит из подвижного органа электромеханического преобразователя, механических передач и исполнительного органа установки, в котором полезно реализуется механическая энергия. Электромеханический преобразователь ЭМП (электродвигатель), всегда присутствующий в электроприводе, преобразует электрическую энергию (U, I) в механическую (М, ω) и обратно.

Электродвигатели различают:

- по роду тока (постоянного, переменного);

- по количеству и схеме соединения обмоток;

- по конструктивному исполнению.

Наиболее распространенные электродвигатели:

- коллекторные двигатели постоянного тока (ДПТ) с независимым (параллельным), последовательным, смешанным возбуждением;

- двигатели переменного тока асинхронные с короткозамкнутым ротором АД КЗ, асинхронные с фазным ротором АД ФР, синхронные СД.

Электрическая машина работает в результате взаимодействия изменяющихся во времени магнитного поля (потока) и тока в контуре. Что изменяется, не важно:

- в ДПТ – неподвижный магнитный поток полюсов статора и движущаяся обмотка якоря с переменным током;

- в АД – вращающееся магнитное поле статора и вращающаяся, но с другой скоростью, обмотка ротора с током.

В ДПТ обмотки размещены на статоре и на роторе.

Статор ДПТ – индуктор с главными полюсами, на которых размещены обмотки возбуждения, создающие магнитный поток Ф. Здесь же могут быть размещены добавочные полюса и компенсационная обмотка, которые не участвуют в процессе электромеханического преобразования.

Ротор ДПТ – якорь с обмоткой якоря и коллектором. Токоподвод к обмотке якоря обеспечивает щеточный механизм. Коллектор является механическим преобразователем подводимого постоянного тока в переменный ток обмотки якоря.

Механический преобразователь (передача) – редуктор, пара винт-гайка, система блоков, кривошипно-шатунный механизм и т. п. осуществляет согласование момента М и скорости ω двигателя с моментом Мм (усилием Fм) и скоростью ωм рабочего органа технологической машины.

Величины, характеризующие преобразуемую энергию, – напряжения, токи, моменты (силы), скорости называют координатами электропривода.

Основная функция электропривода состоит в управлении координатами, т. е. в их принудительном направленном изменении в соответствии с требованиями обслуживаемого технологического процесса.

Управление координатами должно осуществляться в пределах, разрешенных конструкцией элементов электропривода, чем обеспечивается надежность работы системы. Эти допустимые пределы обычно связаны с номинальными значениями координат, назначенными производителями оборудования и обеспечивающими его оптимальное использование.

Электропривод взаимодействует с системой электроснабжения или источником электрической энергии, с одной стороны, с технологической установкой или машиной, с другой стороны, и наконец, через информационный преобразователь ИП с информационной системой более высокого уровня, часто с человеком – оператором, с третьей стороны (рис. 2.1).

Можно считать, что электропривод как подсистема входит в указанные системы, являясь их частью. Действительно, специалиста по электроснабжению электропривод обычно интересует как потребитель электроэнергии, технолога или конструктора машин – как источник механической энергии, инженера, разрабатывающего или эксплуатирующего АСУ, – как развитый интерфейс, связывающий его систему с технологическим процессом или системой электроснабжения.

Практически все процессы, связанные с механической энергией, движением, осуществляются электроприводом. Исключение составляют лишь автономные транспортные средства (автомобили, самолеты, некоторые виды подвижного состава, судов), использующие неэлектрические двигатели. В относительно небольшом числе промышленных установок используется гидропривод, еще реже – пневмопривод.

Столь широкое, практически повсеместное распространение электропривода обусловлено особенностями электрической энергии – возможностью передвигать ее на любые расстояния, постоянной готовностью к использованию, легкостью превращения в любые другие виды энергии.

Сегодня в приборных системах используются электроприводы, мощность которых составляет единицы микроватт; мощность электропривода компрессора на перекачивающей газ станции – десятки мегаватт, т. е. диапазон современных электроприводов по мощности превышает 1012. Такого же порядка и диапазон по частоте вращения: в установке, где вытягиваются кристаллы полупроводников, вал двигателя должен делать 1 оборот в несколько десятков часов при очень жестких требованиях к равномерности движения; частота вращения шлифовального круга в современном хорошем станке может достигать 150000 об/мин.

Но особенно широк диапазон применений современного электропривода: от искусственного сердца до шагающего экскаватора, от вентилятора до антенны радиотелескопа, от стиральной машины до гибкой производственной системы. Именно эта особенность – теснейшее взаимодействие с технологической сферой – оказывала и оказывает на электропривод мощное стимулирующее влияние. Непрерывно растущие требования со стороны технологических установок определяют развитие электропривода, совершенствование его элементарной базы, его методологии. В свою очередь, развивающийся электропривод положительно влияет на технологическую сферу, обеспечивает новые, недоступные ранее возможности.

С энергетической точки зрения электропривод – главный потребитель электрической энергии: сегодня в развитых странах он потребляет более 60% всей производимой электроэнергии. В условиях дефицита энергетических ресурсов это делает особенно острой проблему энергосбережения в электроприводе и средствами электропривода.

Специалисты считают, что сегодня сэкономить единицу энергетических ресурсов, например 1 т условного топлива, вдвое дешевле, чем ее добыть. Нетрудно видеть, что в перспективе это соотношение будет изменяться: добывать топливо становится всё труднее, а запасы его всё убывают.


2.2 Классификация электроприводов


Многообразие производственных процессов обусловливает различные виды и характеры движения рабочих органов машины, а следовательно, и электроприводов.

По виду движения электроприводы могут обеспечить: вращательное однонаправленное движение, вращательное реверсивное и поступательное реверсивное движения.

Вращательное однонаправленное, а также реверсивное движение осуществляется электродвигателями обычного исполнения. Поступательное движение может быть получено путем использования электродвигателя вращательного движения обычного исполнения совместно с преобразовательным механизмом (кулисным, винтовым, реечным и т. п.) либо применения электродвигателя специального исполнения для поступательного движения (так называемые линейные электродвигатели, магнитогидродинамические двигатели и др.).

По степени управляемости электропривод может быть:

1) нерегулируемый – для приведения в действие исполнительного органа рабочей машины с одной рабочей скоростью, параметры привода изменяются только в результате возмущающих воздействий;

2) регулируемый – для сообщения изменяемой или неизменяемой скорости исполнительному органу машины, параметры привода могут изменяться под воздействием управляющего устройства;

3) программно-управляемый – управляемый в соответствии с заданной программой;

4) следящий – автоматически отрабатывающий перемещение исполнительного органа рабочей машины с определенной точностью в соответствии с произвольно меняющимся задающим сигналом;

5) адаптивный – автоматически избирающий структуру или параметры системы управления при изменении условий работы машины с целью выработки оптимального режима.

Можно классифицировать электроприводы и по роду передаточного устройства. В этом смысле электропривод бывает:

1) редукторный, в котором электродвигатель передает вращательное движение передаточному устройству, содержащему редуктор;

2) безредукторный, в котором осуществляется передача движения от электродвигателя либо непосредственно рабочему органу, либо через передаточное устройство, не содержащее редуктор.

По уровню автоматизации можно различать:

1) неавтоматизированный электропривод, в котором управление ручное; в настоящее время такой привод встречается редко, преимущественно в установках малой мощности бытовой и медицинской техники и т. п.;

2) автоматизированный электропривод, управляемый автоматическим регулированием параметров;

3) автоматический электропривод, в котором управляющее воздействие вырабатывается автоматическим устройством без участия оператора.

Два последних типа электропривода находят применение в подавляющем большинстве случаев.

Наконец, по роду тока применяются электроприводы постоянного и переменного тока.


2.3 Основы механики электропривода


Самая простейшая механическая система, состоящая из ротора двигателя и непосредственно связанной с ним нагрузки – рабочего органа машины представлена рис. 2.2. Несмотря на простоту, система вполне реальна: именно так реализована механическая часть ряда насосов, вентиляторов, многих других машин.

Рисунок 2.2 – Модель механической части


К системе на рис. 2.2 приложены два момента – электромагнитный момент М, развиваемый двигателем, и момент Мс, создаваемый нагрузкой, а также потерями механической части (трение); каждый момент имеет свою величину и направление. Движение системы определяется вторым законом Ньютона:


                                                                      (2.1)


где ω – угловая скорость,

J – суммарный момент инерции.

Правая часть уравнения (2.1) – динамический момент



Он возникает, если алгебраическая сумма моментов М и Мс отлична от нуля; величина и знак динамического момента определяют ускорение.

Режимы, при которых ∑M = 0, т. е. моменты М и Мс равны по величине и противоположно направлены, называют установившимися или статическими, им соответствует ω = const, в том числе ω= 0.

Режимы, когда ∑M ≠ 0 , называют переходными или динамическими (ускорение, замедление).

В уравнении (2.1) момент Мс практически полностью определяется свойствами нагрузки, а момент М, который можно принять за независимую переменную, формируется двигателем. Скорость ω – зависимая переменная; ω(t) определяется в динамических режимах решением (2.1) для любых конкретных условий, а в статических режимах находится из условия:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать