Именно простотой процесса управления и наличием технических средств управления (электромеханические, ионные, а затем полупроводниковые преобразователи) обусловлено преимущественное применение регулируемых электроприводов постоянного тока. При том, что ДПТ из-за наличия коллектора и щеточного узла значительно дороже и сложнее в эксплуатации, чем двигатели переменного тока.
Основной схемой преобразования в электроприводе является трехфазная мостовая (обоснование выбора такой схемы описано в разделе 3).
Преимущества УП, выполненных таким образом, – отсутствие вращающихся машин, не требуют обслуживания, имеют высокое быстродействие. Недостатки – низкий коэффициент мощности сosα ≈ cosφ, искажение напряжения питающей сети, трудно компенсируемое при значительных мощностях, необходимость в двух комплектах вентилей для работы в четырех квадрантах, необходимость в сглаживающих и уравнительных реакторах, утяжеляющих конструкцию. [9]
Система тиристорный преобразователь-двигатель (система ТП-Д) является штатным техническим решением практически везде, где используется электропривод постоянного тока. Схема электрическая принципиальная системы тиристорный преобразователь - ДПТ независимого возбуждения представлена на рис. 2.11. Для питания цепи обмотки возбуждения ДПТ применяется однофазный мостовой выпрямитель, выполненный на диодах.
Рисунок 2.11 – Схема электрическая принципиальная системы управляемый выпрямитель – двигатель постоянного тока независимого возбуждения
2.7.1 Электромагнитные процессы в СПП электропривода имитатора ветротурбины
При рассмотрении механических характеристик предполагалось, что преобразователь всегда работает в режиме непрерывного выпрямленного тока (тока якорной цепи) – диаграмма тока на рис. 2.12, а. Фактически же при малых моментах нагрузки на валу двигателя в кривой выпрямленного тока i появляются разрывы и ток становится прерывистым (рис, 2.12, в). Рисунок 2.12, б относится к граничному случаю.
Рисунок 2.12 – Диаграммы выпрямленного напряжения и тока при различных режимах: а) – непрерывный; б) – граничный; в) – прерывистый
Цепь выпрямленного тока содержит активные сопротивления Rя (якорной цепи двигателя и сглаживающего дросселя) и Rtp (трансформатора), а также соответствующие индуктивности Lя и Lтр. Пренебрежем для. простоты значениями Rтр и Lтр. Тогда кривая мгновенных значение выпрямленного напряжения Ud на выходе преобразователя будет определяться отрезками синусоид фазовых ЭДС трансформатора (рис. 2.12, а в), т. е. Ud = ed.
При указанных допущениях на участке работы одного вентиля преобразователя для цепи выпрямленного тока справедливо следующее уравнение электрического равновесия:
(2.18)
где Е – ЭДС якоря, которую за время работы одного вентиля можно считать постоянной;
– скорость изменения мгновенного значения выпрямленного тока;
– ЭДС самоиндукции, наводимая в обмотках якоря двигателя и сглаживающего дросселя.
В соответствии с уравнением (2.18) на рис. 2.12, а – в построены диаграммы изменения во времени тока и напряжений силовой цепи преобразователь — двигатель.
В режиме непрерывного тока (рис. 2.12, а) после открывания очередного вентиля он воспринимает весь ток нагрузки (Iнач, поскольку ed > Е). Далее ток I возрастает до тех нор, пока ed станет больше суммы . При этом
А ЭДС самоиндукции направлена навстречу току и определяется согласно уравнению (2.18) как:
(2.19)
По мере уменьшения разницы между ed и Е скорость возрастания тока и ЭДС самоиндукции уменьшаются и становятся равными нулю в точке а, в которой . Начиная с этой точки , а затем и . Следовательно, после точки а ток I будет уменьшаться и , но при этом ЭДС самоиндукции изменит свой знак и, складываясь с ed, обеспечит протекание тока в прежнем направлении, поскольку . При больших значениях момента нагрузки на валу двигателя, т. е. при больших средних значениях I выпрямленного тока, электромагнитной энергии, запасенной в индуктивности Lя при , оказывается достаточно для того, чтобы при отдаче этой энергии на участке сохранить к концу интервала проводимости вентиля 2π/q*m значение тока i = iнач. Затем вступит в работу следующий вентиль и т. д.
С уменьшением нагрузки двигателя угловая скорость его и ЭДС Е возрастают, а средний ток I и значение iнач уменьшаются. Наконец, при токе I = Iгр наступает такой режим, когда длительность протекания тока через вентиль по-прежнему остается равной 2π/q*m; но в начале и в конце интервала проводимости i = 0. Такой режим называется граничный (рис. 2.12, б).
В режиме непрерывного тока среднее значение выпрямленной ЭДС Еп определяется при α = const выражением:
(2.20)
Дальнейшее уменьшение нагрузки на валу двигателя приводит к тому, что скорость и ЭДС Е двигателя при том же значении α еще более возрастают, а ток I становится меньше Iгр. В этом случае электромагнитной энергии, запасаемой в индуктивности Lя при , будет недостаточно для поддержания тока в течение всего интервала 2π/q*m, и ток i принимает нулевое значение раньше, чем откроется очередной вентиль (рис. 2.12, в). Ток становится прерывистым. В этом режиме в течение промежутка 2π/q*m–λ ток равен нулю. При этом напряжение на выходе преобразователя равно ЭДС двигателя Е, а вращение двигателя поддерживается за счет энергии, запасенной в движущихся массах привода.
Влияние режима прерывистого тока сводится к увеличению среднего значения выпрямленного напряжения на нагрузке по сравнению с режимом непрерывного тока. При уменьшении тока нагрузки ЭДС двигателя стремится к максимальному значению выпрямленной ЭДС edmax, которая зависит от угла регулирования α. В режиме прерывистого тока двигатель ведет себя как конденсатор, запасая энергию на участках, где протекает ток, и расходуя ее, когда ток равен нулю.
Ширина зоны прерывистых токов, т. е. значение Iгр, зависит от суммарной индуктивности цепи выпрямленного тока Lя + Lтр и угла α:
(2.21)
Обычно благодаря наличию сглаживающего дросселя зона прерывистых токов, особенно для многофазных схем выпрямления, достаточно мала. В большинстве случаев значение Iгр max при α = 90o меньше, чем минимальный ток Imin эксплуатационной нагрузки двигателя.
3 РАСЧЕТ СИЛОВОГО БЛОКА ИМИТАТОРА ВТ
Необходимо спроектировать выпрямитель для обеспечения управления двигателем постоянного тока типа П42 с током не более номинального тока якоря и обеспечить длительную работу с номинальным моментом (током) при номинальной скорости вращения с постоянным потоком возбуждения. Параметры двигателя: Рн = 7400 кВт, Uян = 257 В, nн = 3000 об/мин. Допустимые пульсации тока якоря не более 7 % Idн. Обмотка возбуждения UB = 220 В. Требуется определить параметры сетевого трансформатора, параметры вентилей выпрямителей якорной цепи и обмотки возбуждения, параметры сглаживающих дросселей выпрямителей.
Проектирование нового выпрямителя содержит два качественно различных этапа.
1. Этап структурного синтеза, на котором определяется структура (принципиальная схема) выпрямителя.
2. Этап параметрического синтеза, на котором рассчитываются параметры элементов выбранной структуры (принципиальной схемы) выпрямителя. [13]
3.1 Выбор схемы выпрямителя (этап структурного синтеза)
Формальных (математических) методов синтеза структур вентильных преобразователей по требованию задания пока в силовой электронике практически нет, хотя исследования в этом направлении проводятся. Поэтому процедура синтеза схемы выпрямителя сводится к процедуре ее выбора из множества известных на основании знания их свойств. Таким образом, необходима база данных по схемам выпрямителей. В тех случаях, когда не удается выбрать подходящую схему выпрямителя из числа известных, потребуется или изобретение новой схемы, или корректировка задания на проектирование выпрямителя.
На рис. 3.1 дан пример алгоритма выбора схемы выпрямителя исходя из трех заданных параметров выхода выпрямителя (Pd0, Ud0, Id) с учетом в векторе свойств схемы только двух компонентов: использования типовой мощности трансформатора и использования вентилей по обратному напряжению.
Рисунок 3.1 – Алгоритм выбора схемы выпрямителя
В соответствии с заданием на проектирование и алгоритмом выбора схемы выпрямителя по рис. 3.1 наш выпрямитель должен быть трехфазным (Pd0 = 7400 кВт) и двухполупериодным (мостовая схема), так как требуется достаточно высокое выпрямленное напряжение. Выпрямитель обмотки возбуждения также трехфазный, но в связи с невысоким значением выпрямленного напряжения может быть выполнен по однополупериодной схеме. Поскольку коэффициенты преобразования по напряжению выбранных схем выпрямителей различаются в два раза и их требуемые выпрямленные напряжения также различаются в два раза, возможен вариант питания обеих схем от одной системы вторичных обмоток трансформатора.
3.2 Расчет параметров элементов схемы управляемого выпрямителя (этап параметрического синтеза)
На рис. 3.2 представлена упрощенная схема трехфазного мостового управляемого выпрямителя для расчета параметров основных элементов.
Рисунок 3.2 – Упрощенная схема трехфазного управляемого выпрямителя
Напряжение питающей сети по стандарту на качество электрической энергии может максимально отклоняться от номинала до ±10%. Поэтому необходимо обеспечить номинальное выпрямленное напряжение и при минимально возможном напряжении сети, при этом угол регулирования α в выпрямителе рационально иметь равным нулю. Тогда, учитывая, что Uя.н. = Ud0, имеем:
(3.1)
полагая, что обмотки трансформатора будут соединены по схеме звезда звезда и коэффициент трансформации входного трансформатора:
(3.2)
Среднее значение анодного тока вентиля:
(3.3)
Действующее значение анодного тока вентиля:
(3.4)
Выбираем тиристор по среднему значению анодного тока с учетом того, что здесь коэффициент амплитуды Ка=2, а рабочее обратное напряжение должно выбираться по формуле:
(3.5)
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11