Сечение проводов проверяют по допустимой токовой нагрузке по нагреву. По потерям напряжения ВЛ 35 кВ и выше не подлежат, т.к повышение уровня напряжения путём увеличения сечения проводов по сравнению с применением трансформаторов с РПН и средств компенсации реактивной мощности экономически нецелесообразно. По короне проверяют провода, прокладываемые по трассам с отметками выше 1500 м над уровнем моря. При более низких отметках проверка не производиться, если сечения проводов равны минимально допустимым по условиям короны или превышает их [1].
3.4 Выбор (проверка) трансформаторов у потребителей
Выбор трансформаторов у потребителей сводится к выбору числа, типа и мощности трансформаторов. У нас все подстанции двухтрансформаторные, так как в каждом пункте есть потребители I категории. Будем брать трансформаторы только с РПН (регулирование под нагрузкой).
Номинальная мощность трансформаторов двухтрансформаторной подстанции определяется аварийным режимом работы. При установке двух трансформаторов, их мощность выбирается такой, чтобы при выходе из работы одного трансформатора оставшийся в работе трансформатор с допустимой аварийной перегрузкой мог обеспечить нормальное электроснабжение потребителей. По таблице 1.37 [2] находим зимнюю эквивалентную температуру для рассматриваемого района: . Поскольку нагрузка изменилась только в пунктах 2, 4, 6, то произведём выбор трансформаторов только в этих пунктах, причём для обоих рассматриваемых вариантов развития трансформаторы будут одинаковыми. Выбор трансформатора в пункте 2:
PТ2 = P2 + P5; QТ2 = Q'2 + Q'5;
Таблица 3.5 - Нагрузка трансформатора T2
t, час |
0 - 4 |
4 - 8 |
8 - 12 |
12 - 16 |
16 - 20 |
20 - 24 |
Р2, МВт |
10,2 |
30,6 |
40,8 |
40,8 |
51 |
10,2 |
Р5, МВт |
4,8 |
7,2 |
12 |
9,6 |
4,8 |
4,8 |
РТ2, МВт |
15 |
37,8 |
52,8 |
50,4 |
55,8 |
15 |
Q'2, МВАр |
1,58 |
4,74 |
6,32 |
6,32 |
7,91 |
1,58 |
Q'5, МВАр |
1,11 |
1,66 |
2,77 |
2,22 |
1,11 |
1,11 |
QТ2, МВАр |
2,69 |
6,4 |
9,09 |
8,54 |
9,02 |
2,69 |
SТ2, МВА |
15,24 |
38,34 |
53,58 |
51,12 |
56,52 |
15,24 |
МВА
Проверим возможность работы при данной нагрузке уже существующих в пункте 2 трансформаторов ТДТН-40000/110:
МВА
По графику нагрузки определяем:
Интервал недогрузки t = 12 ч
Интервал перегрузки h = 12 ч
Эквивалентная нагрузка за период недогрузки:
МВА
Эквивалентная нагрузка за период перегрузки:
МВА
Коэффициент загрузки на интервале
t:
Коэффициент перегрузки на интервале h:
;
По таблице 1.36 [2] определяем K2ДОП = 1,5 > K трансформатор проходит. Выбор трансформатора в пункте 4:
PТ4 = P4; ;
Таблица 3.6 - Нагрузка трансформатора T4
t, час |
0 - 4 |
4 - 8 |
8 - 12 |
12 - 16 |
16 - 20 |
20 - 24 |
Р4, МВт |
4 |
12 |
16 |
16 |
20 |
4 |
РТ4, МВт |
4 |
12 |
16 |
16 |
20 |
4 |
SТ4, МВА |
4,03 |
12,08 |
16,11 |
16,11 |
20,14 |
4,03 |
МВА
Проверим возможность установки трансформаторов ТДН-16000/110:
МВА
МВА
МВА
;
По таблице 1.36 [2] определяем K2ДОП = 1,5 > K трансформатор проходит. Выбор трансформаторов в пункте 6:
PТ6 = P6; ;
Таблица 3.7 - Нагрузка трансформатора T6
t, час |
0 - 4 |
4 - 8 |
8 - 12 |
12 - 16 |
16 - 20 |
20 - 24 |
Р6, МВт |
3,8 |
15,2 |
19 |
19 |
11,4 |
3,8 |
РТ6, МВт |
3,8 |
15,2 |
19 |
19 |
11,4 |
3,8 |
SТ6, МВА |
3,93 |
15,72 |
19,65 |
19,65 |
11,79 |
3,93 |
МВА
Проверим возможность установки трансформаторов ТДН-16000/110:
МВА
МВА
МВА
;
По таблице 1.36 [2] определяем K2ДОП = 1,5 > K2 трансформатор проходит.
3.5 Технико-экономическое обоснование наиболее рационального варианта
Чтобы выбрать один вариант схемы развития сети из двух, для каждой схемы необходимо провести технико-экономический расчёт.
Варианты сопоставляются по приведенным затратам на сооружение сети и её эксплуатацию. При этом допускается сопоставление только в отличающихся частях вариантов схем. Экономически целесообразным принимается вариант, характеризуемый наименьшими приведенными затратами при условии, что затраты на другой вариант превышают наименьшие более чем на 5%.
При выполнении технико-экономических расчётов используются укрупнённые показатели стоимости элементов электрических сетей.
Приведенные затраты:
EН = 0,12 - нормативный коэффициент сравнительной эффективности капиталовложений
- суммарные капиталовложения в подстанции и линии,
- суммарные издержки
У - ущерб от недоотпуска электроэнергии, принимаем У = 0, поскольку у нас все линии двухцепные, подстанции двухтрансформаторные, а двойные аварии мы не рассматриваем.
В расчёте будем сравнивать только отличающиеся части схем. Таковыми являются:
Для первого варианта: |
Для второго варианта: |
1) Линия ИП2-4 2) Линия 4-6 3) ОРУ ВН пункта 4 |
1) Линия ИП2-2 2) Линия 3-6 3) ОРУ ВН пункта 2 |
Капиталовложения в подстанцию 2, 4, 6, издержки на потери электроэнергии в трансформаторах подстанций 2, 4, 6, постоянная часть затрат на реконструкцию подстанции 2, а также возвратная стоимость демонтируемой подстанции 4 (35 кВ) и двух выключателей 35 кВ из ОРУ СН подстанции 2 в обоих вариантах одинаковы.
Технико-экономический расчёт для варианта №1:
Капиталовложения в линии:
,
где К0 - стоимость сооружения одного километра линии, тыс. руб/км (таблица 7.5 [1]), L - длина линии, км.
Предположим, что все опоры стальные.
Расчёт сведём в таблицу:
Таблица 3.8 - Капитальные вложения в линии варианта №1
Линия |
ИП2-4 |
4-6 |
Марка провода |
АС-120/19 |
АС-70/11 |
UНОМ, кВ |
110 |
110 |
Длина, км |
33,8 |
23,5 |
К0, тыс. руб/км |
64 |
64 |
КВЛ, тыс. руб |
2163 |
1504 |
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21