Регулирование энергетических установок

2. Регулирование работы центробежных компрессоров

2.1 Введение


Характеристикой компрессора динамического действия называется зависимость его основных рабочих параметров (таких, как отношение давлений , внутренняя мощность Nі, политропный (или изоэнтропный) КПД  (или ), коэффициенты эффективной работы , теоретической работы  или мощности ) от параметра, характеризующего производительность компрессора при различных фиксированных значениях безразмерной окружной скорости.

Универсальная характеристика двухступенчатого центробежного компрессора в координатах , ,  представляет собой семейство индивидуальных характеристик, каждая из которых получена при  (Рис.6.14, а). Индивидуальные характеристики получают при испытаниях компрессора на специальных стендах, изменяя производительность дросселированием на нагнетании с помощью специальной заслонки или вентиля. При максимальной производительности из-за больших потерь в проточной части значения отношений давлений и КПД невелики. С уменьшением производительности потери в проточной части снижаются. При этом  и КПД возрастают. Оптимальному режиму работы соответствуют наименьшие потери и максимальное значение КПД. Дальнейшее уменьшение производительности сопровождается снижением КПД. При минимальной или критической производительности наступает помпаж компрессора. Помпаж - это автоколебательный процесс в системе "компрессор-сеть", при котором давление нагнетания периодически резко снижается, а направление движения газа изменяется на обратное. При этом обычно слышны характерные "хлопки". Положение критической точки Б начала помпажа зависит не только от компрессора, но и от свойств сети: ее объема и частоты собственных колебаний находящегося в ней газа. Помпажу обычно предшествует вращающийся срыв в колесе или диффузоре. Работа компрессора в режиме помпажа недопустима, так как она сопровождается колебаниями ротора и может привести к аварии.



На поле кривых  наносятся линии постоянного КПД, наглядно показывающие область оптимальной работы компрессора, в которой лежит точка А, соответствующая расчетному режиму работы. Характеристики отдельных ступеней часто строятся в координатах  (Рис.6.14, б) и представляют собой экспериментальную основу при проектировании. Энергетические показатели центробежного компрессора в эксплуатации определяются как его характеристикой, так и сетью, на которую она работает. Для компрессора паровой холодильной машины, например, сетью является система теплообменных аппаратов: испаритель, конденсатор и соединительные трубопроводы. Допустим, что при расчетном режиме совместная работа компрессора и сети определяется точкой А. Рассмотрим изменение режима работы, при котором холодопроизводительность уменьшается, а средние температуры источников остался неизменными (Рис.6.14, в). Перепады температур  и  уменьшением Q0 (и массового расхода G) также будут уменьшаться.

Это приведет к снижению давления конденсации и увеличению давления кипения. Отношение давлений  должно уменьшаться (кривая 1 на Рис.6.14, а). В нерегулируемом же компрессоре с уменьшением производительности в соответствии с характеристикой (Ми=1,1)  будет возрастать. Поэтому для обеспечения нормальной работы холодильных машин применяют различные способы регулирования центробежных компрессоров. Эти же методы регулирования работы турбомашин применяются и в других установках. Рассмотрим их.


2.2 Регулирование перепуском или байпасированием


Регулирование перепуском или байпассированием, при котором сжатый газ со стороны нагнетания пере пускается через дроссельное устройство на сторону всасывания. Энергетически это самый неэффективный из методов регулирования, однако он очень просто осуществляется и обладает неограниченной глубиной регулирования. Поэтому его, к сожалению, часто применяют в процессе эксплуатации.



2.2.1 Регулирование дросселированием на нагнетании

Регулирование дросселированием на нагнетании достигается за счет установки дроссельного устройства на нагнетательной линии. С его помощью можно уменьшить производительность только до точки Б, в которой наступает помпаж компрессора. Этот метод также энергетически невыгоден.

2.2.2 Регулирование изменением частоты вращения

Регулирование изменением частоты вращения (Рис.6.15, а) позволяет работать при достаточно высоких значениях КПД, но его возможности для характеристики сети 1 также невелики, так как производительность может быть уменьшена только до точки В.


2.2.3 Регулирование дросселированием на всасывании

Регулирование дросселированием на всасывании (Рис.6.15, б) осуществляется с помощью дроссельного устройства, располагаемого перед входом в компрессор. По мере прикрытия дросселя характеристики компрессора сдвигаются в сторону меньших расходов с одновременным уменьшением отношения давлений и КПД. Таким способом можно уменьшить производительность до точки Г. Энергетическая эффективность дросселирования на всасывании выше, чем дросселирования на нагнетании, но уступает регулированию изменением частоты вращения.

2.2.4 Регулирование закруткой потока при входе в колесо

Регулирование закруткой потока при входе в колесо с помощью входного регулирующего аппарата (ВРА) получило широкое распространение в центробежных компрессорах (Рис.6.16). Закрутка потока по вращению колеса на угол  вызывает появление положительной проекции скорости c1 на окружное направление с1u >0 и значит  (Рис.6.17). При этом в соответствии с уравнениями, определяющими коэффициент мощности , внутреннюю удельную работу ступени  и теоретическую (Эйлерову) работу  коэффициент мощности , теоретическая  и внутренняя  удельные работы будут уменьшаться. Вследствие этого уменьшится и отношение давлений в ступени. Это особенно заметно при высокой производительности (Рис.6.17, а), когда  достигает наибольших значений.

По мере снижения производительности (Рис.6.17, б) величина проекции  становится меньше, поэтому параметры ,  и  приближаются к своим значениям при отсутствии закрутки потока, когда. Вследствие этого характеристики ступени смещаются в сторону меньших значений производительности (см. Рис.6.16). Относительная скорость , а значит и потери в колесе при положительной закрутке потока уменьшаются, поэтому при малых  КПД ступени может даже несколько увеличиваться по сравнению с КПД при . При больших  из-за потерь в ВРА КПД ступени уменьшается.


Закрутка потока против вращения на угол  вызывает появление отрицательных  и . Вследствие этого ,  и  увеличиваются. Так как при этом относительная скорость  тоже увеличивается (Рис.6.17, а), а с нею возрастают и потери в колесе, то КПД ступени снижается. Регулирование с помощью ВРА позволяет уменьшить производительность компрессора до точки Д (рис 6.14, а), что соответствует уменьшению производительности до 40-45% от номинальной. Важно отметить, что при регулировании с помощью ВРА отношение давлений с уменьшением производительности также уменьшается (см. Рис.6.16), поэтому этот способ благоприятен для характеристики сети 1. Нужно заметить, что ВРА устанавливаются почти на все отечественные холодильные центробежные компрессоры.

2.2.5 Регулирование поворотом лопаток диффузора

Регулирование поворотом лопаток диффузора позволяет уменьшить производительность ступеней до 5-10% от номинальной. На Рис.6.18 представлены характеристики центробежной ступени при углах установки лопаток диффузора , причем в принципе возможно дальнейшее уменьшение  до . Максимальный КПД ступени при уменьшении снижается в основном за счет увеличения потерь в колесе при его работе с большими углами натекания на лопатки. При очень малых углах  () потери в лопаточном диффузоре также несколько возрастают. Отношение давлений в ступени при регулировании поворотом лопаток диффузора зависит от величины лопаточного угла. При =15...45° с уменьшением  отношение давлений возрастает. Это объясняется тем, что коэффициент теоретической работы  таких колес увеличивается с уменьшением коэффициента расхода  (Рис.6.9). При =60° отношение давлений примерно постоянно, так как небольшой для такого  рост  с уменьшением расхода компенсируется увеличением потерь в колесе и диффузоре при малых . При =90° по той же причине отношение давлений падает при уменьшении . При работе на сеть с характеристикой 1, вдоль которой  с уменьшением производительности снижается, КПД ступени с колесом =45° (Рис.6.18) будет близок к максимальному только при больших  (=14...10°). С уменьшением  КПД в точке совместной работы ступени и сети будет ниже максимального. Из сопоставления характеристик, приведенных на Рис.6.16 и 6.18, видно, что вследствие этого КПД ступени с БЛД, регулируемой поворотом лопаток ВРА, и той же ступени, регулируемой поворотом лопаток диффузора, при работе на сеть с характеристикой 1 будет примерно одинаковым, несмотря на то, что максимальные КПД у ступени с ЛД на 1-4% выше, чем у ступени с БЛД. Это показывает, что сравнение эффективности различных способов регулирования производительности возможно только при совместном рассмотрении характеристик компрессора и сети, на которую он работает.

2.2.6 Комбинированное регулирование производительности

Комбинированное регулирование производительности позволяет получить наилучшие показатели компрессора при работе на сеть с заданной характеристикой. Так, если одновременно с уменьшением угла  (Рис.6.18) снижать частоту вращения ротора, то можно обеспечить работу ступени на сеть 1 с максимальным КПД. Необходимое для этого уменьшение частоты вращения находится в пределах 5-10% от номинальной. При малых  максимальный КПД ступени может быть дополнительно увеличен, если с помощью ВРА закрутить поток в направлении вращения колеса. При этом возрастает угол  на входе в колесо (см. Рис.6.17), уменьшается угол нагнетания на лопатки  и, следовательно, потери в колесе. Такое комбинированное регулирование позволяет получить более высокие значения КПД (на 5-10%) при наибольшей глубине изменения производительности и является перспективным для центробежных компрессоров.


При эксплуатации холодильных машин часто возникают колебания температуры окружающей среды, например сезонные, и связанные с ней температуры и давления конденсации. Если при этом необходимо поддерживать постоянными температуру кипения и холодопроизводительность, то с уменьшением давления конденсации отношение давлений  и массовая производительность G будут уменьшаться, так как удельная холодопроизводительность будет возрастать (см. Рис.6.14, в, где ). В результате характеристика сети представится линией 1 (см. Рис.6.14, а-6.16, 6.18).

Как видно из рассмотренных примеров, область, в которой могут лежать характеристики сети холодильных машин, при одновременном изменении холодопроизводительности и температуры конденсации располагается левее линии 1 (см. Рис.6.14, а) и весьма обширна. Поэтому применение наиболее эффективных способов регулирования приобретает особое значение, так как позволит значительно повысить КПД компрессора при его работе на сеть.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать