Регулирование энергетических установок

Пар для промежуточного перегрева отбирается из турбины при различном давлении, и весовое количество пара, заключенного в промежуточном объеме, может меняться в широких пределах в установках разного типа. Кроме того, в одной и той же турбине давление и весовое количество пара в промежуточном объеме, а также мощности отсеков до объема и после него могут изменяться во много раз при переходе от холостого хода к полной нагрузке. Поэтому при конструировании турбин необходимо иметь ясное представление влиянии промежуточного объема на устойчивость и на переходный процесс регулирования. Ниже дан анализ влияния промежуточных емкостей на устойчивость и качество процесса регулирования, причем параметры в пределах рассматриваемой емкости считаются сосредоточенными.

Систему регулирования (фиг.106) будем рассматривать состоящей из регулятора 1, усилителя 1, ротора 1 и двух паровых объемов 4 и 5, из которых первый образован пространством между регулировочными клапанами и ступенями турбины, а второй представляет промежуточный объем.

Предварительно отметим особенности уравнений движения турбины с промежуточными объемами пара.

3.2.3 Регулирование турбин с противодавлением

Турбины с противодавлением устанавливаются обычно там, где внешнее потребление пара велико по сравнению с расходом электрической энергии. В этих условиях турбина с противодавлением работает по электрическому графику, удовлетворяя меняющиеся потребности в электрической энергии. Расход пара турбиной при этом определяется электрической нагрузкой, а скорость вращения ее ротора поддерживается в известных пределах посредством регулятора скорости. Давление за турбиной поддерживается регуляторами давления других объектов, например с помощью дроссельно-увлажнительной установки.

Турбина с противодавлением может оказаться и в таких условиях, когда тепловой потребитель расходует пара меньше, чем то количество, которое необходимо для выработки электрической энергии. В упомянутых условиях турбина может работать только по тепловому графику, отдавая электрическую энергию в сеть совместно с другими машинами, работающими параллельно и покрывающими колебания электрической нагрузки.



При этом скорость вращения турбины сохраняется вследствие той силовой связи, которую имеет электрический генератор с сетью, а частота последней, в свою очередь, поддерживается регуляторами скорости других машин. В то же время давление за турбиной поддерживается регулятором давления 1 (фиг.114). Регулятор скорости 1 такого турбогенератора служит для синхронизации при включении агрегата в электрическую сеть и для предохранения его от чрезмерного повышения скорости вращения в случае внезапного сброса электрической нагрузки.

При параллельной работе турбин с противодавлением в сеть, частота в которой меняется мало, муфта регулятора скорости перемещается на малые величины и оказывает незначительное влияние на парораспределительные органы. Если частота в сети сильно меняется, то регулятор скорости существенным образом вмешивается в работу агрегата, вызывая изменение противодавления, а регулятор давления при этом возвращает клапаны к их прежнем положению. Ограничения размеров нарушений, вносимых регулятором скорости, можно достигнуть, увеличивая его коэффициент неравномерности. Если регулирование предназначено также для работы с одним регулятором скорости, то вредное его влияние при совместной работе с регулятором давления можно парализовать путем устройства передвижного упора для муфты, препятствующего вмешательству регулятора скорости при нормальной скорости вращения, но оставляющего ему свободу действия при значительном повышении скорости вращения (в случае сброса нагрузки). Турбины с противодавлением строятся как мелкие, так и очень крупные - мощностью до 50 МВт. Крупные турбины с противодавлением находят широкое применение в качестве предвключенных турбин, предназначенных для надстройки тепловых электростанций с целью улучшения их экономичности путем повышения параметров пара. Такие турбины работают по тепловому графику, поскольку протекающее через них количество пара определяется расходом пара турбинами низкого давления, перед которыми поддерживается приблизительно постоянное давление.

Турбина с противодавлением служит ярким примером динамической системы, в которой аккумулированный в камере пар играет положительную роль в процессе регулирования, тогда как паровой объем перед турбиной оказывал вредное влияние на динамические качества системы.

Динамика регулирования скорости турбин с противодавлением в принципе не отличается от динамики регулирования конденсационных турбин. Следует иметь в виду, что турбины с противодавлением обычно обладают легкими роторами с малым моментом инерции, вследствие чего время машины получается значительно меньше, чем для конденсационных турбин.


3.2.4 Регулирование турбин с одним отбором пара

В турбинах с отбором пара требуется регулирование двух величин: скорости ротора и давления в месте отбора пара. В соответствии с этим требованием турбина должна обладать двумя группами парораспределительных органов, одна из которых расположена перед частью высокого давления, а вторая перед частью низкого давления (фиг.116). Регулировать каждую величину можно путем совместного действия регулятора скорости и регулятора давления. Но можно подобрать кинематические связи между регуляторами и распределительными органами турбины и таким образом, чтобы каждый регулятор мог управлять машиной самостоятельно, без вмешательства другого регулятора. Последние системы регулирования называются автономными.



При отсутствии указанных кинематических связей каждый регулятор управляет только одной группой клапанов: регулятор скорости - клапанами части высокого давления, а регулятор давления - клапанами части низкого давления. Такое регулирование называется несвязанным (фиг.116).


4. Регулирование работы холодильных машин

4.1 Введение


Задача регулирования холодильной машины состоит в том, чтобы добиться поддержания определенной температуры охлаждаемого объекта, которая имеет тенденцию изменяться под воздействием внутренних и внешних теплопритоков.

Системы автоматизации решают комплекс задач по управлению работой холодильные машины. Автоматическое регулирование холодильной машины позволяет обеспечить точность поддержания заданных параметров, что сокращает потери продуктов в холодильной камере, способствует сохранению их качества, снижает эксплуатационные затраты, увеличивает срок службы холодильного оборудования в результате поддержания оптимального режима его эксплуатации. Применение приборов автоматической защиты позволяет предупредить аварийные режимы.

4.2 Способы регулирования холодопроизводительности

Установление температуры в охлаждаемом помещении. Температура охлаждаемого объекта зависит от температуры кипения рабочего вещества, которая самоустанавливается в зависимости от производительности компрессора, испарителя и конденсатора. На рис.11.1 показана зависимость холодопроизводительности компрессора QK и испарителя Q0 от температуры кипения при постоянной температуре конденсации. Пересечение линий Q0 и Q0l определяет рабочую точку А. Перпендикуляр, опущенный из точки А на ось абсцисс, дает значение температуры кипения Т0. При этом линия, характеризующая расходную характеристику дроссельного вентиля Qдр, должна проходить через точку А. Если изменится зависимость компрессора Qк=f (Т0) и станет QK1=f1 (T0) (рис 11.1) при неизменной характеристике испарителя Q0 - f (T0), то рабочая точка переместится в точку А1 и температура кипения примет новое значение Т01. Расходную характеристику дроссельного вентиля необходимо изменить таким образом, чтобы она проходила через точку A1 Здесь следует подчеркнуть пассивную роль дроссельного вентиля. Температура кипения устанавливается не в результате степени открытия дроссельного вентиля, а в результате изменения холодопроизводительности компрессора. Степень открытия дроссельного вентиля должна соответствовать рабочей точке холодильной машины. В противном случае машина будет работать в неустановившемся режиме.

Установление нового значения температуры кипения Т01 может произойти и при изменении характеристики испарителя Q0=f (Т0). Такое же значение температуры кипения Т01 установится в испарителе холодильной машины, если при зависимости компрессора QK=f (Т0) характеристика испарителя Q0=f (T0) изменится и станет Q01=f1 (Т0) (рис.11.1). Расходная характеристика дроссельного вентиля также должна измениться и принять новое значение Qдр1.



Таким образом, для изменения температуры в охлаждаемом помещении или для поддержания в нем постоянной температуры (при изменении теплопритоков в этом помещении) необходимо изменять холодопроизводительность компрессора (или компрессоров), т.е. регулировать их холодопроизводительность. Различают две системы изменения холодопроизводительности: плавную и позиционную (ступенчатую).

Плавное регулирование холодопроизводительности. Этот способ регулирования может реализоваться в компрессионных холодильных машинах с помощью внешних и встроенных устройств.

К внешним относят регулирующие устройства, устанавливаемые на линии перепуска с нагнетательной стороны на всасывающую (байпасы). Регулирование холодопроизводительность перепуском пара из линии нагнетания в линию всасывания (байпасирование) практически можно использовать на всех компрессионных холодильных машинах. Однако этот способ регулирования невыгоден из-за потерь потенциальной энергии сжатого пара. Кроме того, повышается температура всасывания, что увеличивает работу сжатия и ведет к повышению температуры нагнетания. Регулирование в этом случае осуществляется посредством установки регулирующих вентилей между линиями нагнетания и всасывания, которые открываются и закрываются по сигналу от датчика давления или температуры.

К внешним устройствам относят также дросселирование пара на всасывании, которое состоит в том, что компрессор с помощью автоматического регулятора давления переводится на работу с более низким давлением всасывания, в результате чего его холодопроизводительность уменьшается. Эта система имеет ограниченное применение, так как при понижении давления всасывания увеличивается степень повышения давления и температурная напряженность компрессора. Это ведет к снижению холодильного коэффициента. Дросселирование на всасывании применяется при необходимости регулирования холодопроизводительности на компрессорах, не оборудованных специальными устройствами.

Перспективным является регулирование холодопроизводительности путем изменения частоты вращения привода компрессора, что также относится к внешним устройствам.

Встроенными являются устройства, изменяющие внутренние параметры компрессоров. В поршневых компрессорах могут применяться золотники, связывающие полость цилиндра с всасывающей полостью, а также устройства, плавно изменяющие мертвый объем цилиндров. В винтовых компрессорах золотник изменяет эффективную длину винтов, в результате чего регулируется холодопроизводительность. В центробежных компрессорах применяют входной регулирующий аппарата и диффузор с поворотными лопатками.

В теплоиспользующих холодильных машинах для плавного регулирования холодопроизводительности используются управляемые клапаны, изменяющие расход греющих или охлаждающих сред.

Плавное регулирование холодопроизводительности используется, как правило, в системах с малой тепловой инерцией и с быстро изменяющейся нагрузкой.



Позиционное (ступенчатое) регулирование холодопроизводительности. Эта система меняет холодопроизводительность скачками (ступенями). В зависимости от числа ступеней могут быть двух-, трех - и многопозиционные системы. Позиционное регулирование по своим свойствам может приближаться к плавному в том случае, когда размах колебаний мал, а частота относительно велика.

Позиционное изменение холодопроизводительности используется в основном в холодильных машинах с поршневыми компрессорами. Наиболее распространенным является способ "пуск-остановка" компрессора. Если в холодильной машине один компрессор, то осуществляется двухпозиционное регулирование, если несколько - многопозиционное.

Рассмотрим двухпозиционное регулирование. При периодической работе холодильной машины (рис.11.1) температура кипения Т0 понижается от Т01 до Т01. Компрессор останавливается, когда температура кипения достигает значения Т01, но теплоприток к испарителю продолжается. После того как температура рабочего вещества в испарителе снова достигает значения Т01, компрессор включается и период повторяется. Таким образом, каждый период τц состоит из двух частей: первой части, в которой компрессор включен (τр), и второй части, в продолжение которой компрессор не работает (τнр).

После пуска холодильная машина проходит две стадии: неупорядоченный процесс и упорядоченный процесс неустановившегося теплового состояния. К первой стадии следует отнести период разгона компрессора, переход дроссельного устройства в рабочее положение, время заполнения испарителя до нормы жидким рабочим веществом или удалении избыточного количества жидкого рабочего вещества. После завершения первой стадии наступает вторая, которая длится до выключения компрессора и характеризуется постоянным понижением температуры кипения.

В настоящее время достаточно широко распространен способ изменения холодопроизводительности отключением части цилиндров в многоцилиндровых компрессорах. Отключение цилиндров происходит путем отжима всасывающих клапанов с помощью механических толкателей, которые приводятся в движение гидравлическим, пневматическим или электромагнитным приводами.

В отечественном холодильном машиностроении для холодильных машин с поршневыми компрессорами применяют разработанную НИИхолодмашем систему электронного регулирования производительности компрессоров. В основу этого регулирования положен принцип воздействия на всасывающие клапаны электромагнитного поля.



Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать