Составление структурной схемы для установившегося режима

Рисунок 8 – Фильтр на выходе тахогенератора


Такое допущение основывается на том, что внутреннее сопротивление тахогенератора можно считать пренебрежимо малым, а нагрузочное сопротивление R2 на порядок больше внутреннего сопротивления фильтра. Полярность Uтг подбирается такой, чтобы в установившемся режиме сигнал обратной связи на входе У2 был обратным по знаку сигналу Uзад. Постоянная времени фильтра определяется произведением CфRф.

Выходное напряжение фильтра U1 определяется в соответствии со следующими выражениями:


(11)


(12)


 

1.3 Составить полную и линеаризированную структурные схемы


В целом рассматриваемая система электропривода представляет собой одноконтурную замкнутую САУ с последовательным корректирующим устройством.

Прямой канал полной структурной схемы САУ включает в себя последовательное соединение звеньев сумматора У2 с входными воздействиями - задающим Uзад и обратной связи U1, и выходным воздействием U2; коррекции У1 с входом U2 и выходом U3; тиристорного преобразователя, состоящего из инерционного звена 1-го порядка с коэффициентом усиления равным единице и безынерционного нелинейного звена с графическим изображением статической характеристики преобразователя, входным воздействием преобразователя служит Uз, а выходным - Ud ; электродвигателя с указанными выше воздействиями Ud, n, DUc, Mc.

Канал обратной связи состоит из усилительного звена тахогенератора ТГ с коэффициентам передачи Kтг, входным воздействием n и выходным Uтг и фильтра в виде инерционного звена 1-го порядка.

Рисунок 9 - Полная структурная схема САУ


Линеаризованная структурная схема САУ получается, если полные переменные Х (Uзад, U2, U3, Ud, DUc, I, M, Mc, n, Uтг, U1) представить в виде суммы ХA+DX, где ХA - значения переменных в рабочей точке А статических характеристик звеньев. После сокращения статических составляющих в правой и левой части уравнений звеньев, линеаризованные структурные схемы звеньев отразят зависимость между приращениями выходных и входных переменных (DUзад, DU2, …, DU1). Форма записи передаточных функций линейных звеньев при этом не изменяется, а статические характеристики нелинейных безынерционных звеньев будут представлены в виде коэффициентов динамической линеаризации в рабочей точке.


Рисунок 10 - Линеаризованная структурная схема САУ



1.4 Определение численных значений коэффициентов связи и

постоянных времени неизменяемой части системы


Найдём сопротивление якоря двигателя.


(13)


Электромагнитная постоянная времени якорной цепи:


(14)


Конструктивный коэффициент электродвигателя Сe рассчитывается по уравнению баланса напряжений якоря двигателя в установившемся номинальном режиме.


(15)


Тогда


(16)


Найдём коэффициент передачи двигателя:


.(17)


И электромеханическую постоянную времени двигателя:


(18)


Сравнивая передаточные функции электродвигателя по задающему воздействию и колебательного звена можно определить коэффициент затухания:


(19)



(20)


Как видно, коэффициент демпфирования 0<x<1 - тогда можно двигатель представить колебательным звеном, что и было сделано выше. Собственная частота колебаний двигателя:


(21)


Из графической зависимости Ud(U3) по данным таблицы 1, построенном в одинаковом масштабе по обеим осям, определяется коэффициент Kп динамической линеаризации статической характеристики тиристорного преобразователя. Или графически Kп равен тангенсу угла наклона касательной, проведенной к статической характеристике в рабочей точке А. Рабочая точка А определяется значением выпрямленного напряжения Ud|A, в режиме идеального холостого хода электродвигателя. Значение Kп определяется в трех рабочих точках:

- Kпмин при минимальном значении Ud в заданном диапазоне регулирования D=10, т.е. Udмин= Uн/D, Udмин=22(В); Kпмин =22/4 =6

- Kпмакс - в точке с максимальным наклоном статической характеристики:

Kпмакс = 60/5=12

- Kпзад при заданном значении выпрямленного напряжения UdЗАД=СЕ×nЗАД=1,98×42=83,2(В) Kпзад=83,2/8=10 используется для построения ЛАЧХ САУ в заданном рабочем режиме.


(22)


2. Анализ установившегося режима системы

 

2.1 Составление структурной схемы для установившегося режима


Рисунок 11 - Структурная схема для установившегося режима


Структурная схема дня установившегося режима составляется на основе уравнений элементов САУ в статике или на основе линеаризованной структурной схемы САУ формальным путём приравнивания оператора p к нулю. Следует обратить внимание, что последним способом установившийся режим работы двигателя может быть описан лишь на основе полной передаточной функции двигателя по отношению к Ud и Мс с выходом по частоте вращения, т.е. с учетом внутренней обратной связи двигателя.


2.2 Определение необходимого коэффициента передачи


По полученной структурной схеме в установившемся режиме можно определить статическое отклонение частоты вращения вала Dn при приложении Мc= Mн в разомкнутой системе без обратной связи (без тахогенератора и фильтра) - DnpMc, и в замкнутой САУ - DnзMc. Нетрудно убедиться, что соблюдается равенство


(23)


где


Kp=K1×Kп×Kд×Kтг (24)


коэффициент передачи замкнутого контура САУ в разомкнутом состоянии.

Отклонение DnpMc рассчитывается непосредственно из структурной схемы в установившемся режиме, при этом согласно (1)


Мс=Мн=СeIн. (25)


Мс=1,98×32,6 = 64,55 (Н×м)


(26)


Учитывая, что относительное падение частоты вращения в статике при приложении Мс имеет максимальную величину при минимальной частоте вращения в пределах заданного диапазона регулирования D, и, исходя из требований п.п. 2 задания, имеем


 (27)


Тогда необходимый коэффициент передачи Kpмин может быть найден из уравнения (23), а требуемый из условий статики коэффициент K1 операционного усилителя У1 из уравнения (24), учитывая, что Kpмин в качестве сомножителя имеет коэффициент передачи тиристорного преобразователя равный Kпмин.

(28)



(29)



(30)



2.3 Определение значения переменных (Uзад, U2, U3, Ud,Uтг, U1)

для режима с заданной частотой nзад


(31)


U3=14(В) - по статической характеристике при Udзад=83,16(В)


(32)



(33)



(34)



2.4 Определение статических отклонений Dn частоты вращения

вала привода от заданного значения nзад


Статическое отклонение частоты вращения Dn вала при приложении Мс=Мн в разомкнутой системе без обратной связи:

 

(35)


В замкнутой САУ:


(36)


(37)


Статическое отклонение частоты вращения Dn вала при ступенчатом воздействии возмущения DUc=0,1Udзад в разомкнутом состоянии системы:


(38)


в замкнутой САУ:


(39)


Из полученных значений видно, что точность поддержания частоты вращения вала в замкнутой САУ выше, чем в разомкнутой, т.к. статическое отклонение в замкнутой САУ уменьшается на коэффициент , появляющийся при наличии обратной связи.

 


3. Исследование динамики системы

 

3.1 Построение аппроксимированной ЛАЧХ системы в

разомкнутом состоянии и проверка устойчивости


Некорректированная САУ в разомкнутом, состоянии состоит из последовательно соединенных звеньев:

- усилительного - усилителя У1 с коэффициентом передачи K1, найденным из условия статики во второй части задания;

- инерционного - тиристорного преобразователя с коэффициентом передачи Kп и частотой сопряжения wп= 1/Тп;

- колебательного - электродвигателя с коэффициентом передачи Кд и собственной частотой колебаний ;

- усилительного - тахогенератора с коэффициентом передачи Kп;

- инерционного - фильтра с единичным коэффициентом передачи и частотой сопряжения wф=1/Тф.

Коэффициенты передачи всех звеньев (в том числе и желаемый K1) могут быть объединены в соответствии с (7) в один коэффициентов Kp. Следует учитывать, что наихудшие условия с точки зрения устойчивости при заданных параметрах динамических звеньев будут при максимальном значении Kp в требуемом диапазоне регулирования, т.е. при Kp= Kpмакс.

Процесс построения аппроксимированной ЛАЧХ некорректированной САУ в разомкнутом состоянии можно ускорить, если воспользоваться следующей методикой:

- определить значения ординаты Lp(0) = lg Kpмакс и абсцисс частот сопряжения и колебаний lg wп, lg wд, lg wф;

- на низких частотах графика Lнкp(w) отложить ординату, равную Lp(0), и провести ÷åðåç эту ординату прямую с нулевым наклоном ( параллельно оси абсцисс) до ближайшей меньшей собственной частоты одного из звеньев;

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать