Создание первого электродвигателя
1. Введение.
XX век - это мир техники. Могучие машины добывают из недр земли
миллионы тонн угля , руды , нефти .Мощные электростанции вырабатывают
миллиарды киловатт-часов электроэнергии .Тысячи фабрик и заводов
изготавливают одежду , радиоприемники , телевизоры , велосипеды ,
автомобили , часы и другую необходимую продукцию . Телеграф , телефон и
радио соединяет нас со всем миром . Поезда , теплоходы , самолеты с
большой скоростью переносят нас через материки и океаны .А высоко над нами
, за пределами земной атмосферы , летают ракеты и искусственные Спутники
Земли. Все это действует не без помощи электричества.
Человек начал свое развитие с присвоения готовых продуктов природы . Уже на первом этапе развития он стал применять искусственные орудия труда.
С развитием производства начинают складываться условия для возникновения и развития машин. Сначала машины , как и орудия труда лишь помогали человеку в его труде .Затем они стали постепенно заменять его .
В феодальный период истории впервые в качестве источника энергии была использована сила водяного потока. Движение воды вращало водяное колесо , которое в свою очередь приводило в действие различные механизмы .В этот период появилось множество разнообразных технологических машин. Однако широкое распространение этих машин часто тормозилось из-за отсутствия рядом водяного потока .Нужно было искать новые источники энергии , чтобы приводить в действие машины в любой точке земной поверхности . Пробовали энергию ветра , но это оказалось малоэффективным .
Стали искать другой источник энергии . Долго трудились изобретатели
, много машин испытали - и вот , наконец , новый двигатель был построен .
Это был паровой двигатель. Он приводил в движение многочисленные машины и
станки на фабриках и заводах .В начале XIX века были изобретены первые
сухопутные паровые транспортные средства -паровозы .
Но паровые машины были сложными , громоздкими и дорогими установками .
Бурно развивающемуся механическому транспорту нужен был другой двигатель -
небольшой и дешевый . В 1860 г. француз Ленуар , использовав
конструктивные элементы паровой машины , газовое топливо и электрическую
искру для зажигания, сконструировал первый нашедший практическое
применение двигатель внутреннего сгорания .
Все эти двигатели требовали топлива , и ученые в то же время работали над изобретением двигателя , работающего на электричестве - электродвигателя - бесшумного и небольшого . Первый электродвигатель сконструировал русский ученый Б.С. Якоби .
В настоящее время жизнь человечества без электродвигателя трудно представляется . Он используется в поездах , троллейбусах ,трамваях .На заводах и фабриках стоят мощные электрические станки .Электромясорубки , кухонные комбайны , кофемолки ,пылесосы - все это используется в быту и оснащено электродвигателями.
На мой взгляд изобретение электродвигателя - есть одно из важнейших достижений естествознания XIX столетия . К тому же , эта заслуга принадлежит русскому ученому .Важность этого открытия очевидна : электроэнергия стала в наше время доступной и дешевой . Благодаря сети электропроводов , ее можно подвести фактически в любую точку земного шара.
Если в конце прошлого века самая распространенная сейчас электроэнергия
-электрическая - играла ,в общем, вспомогательную и незначительную в
мировом балансе роль , то уже в 1930 г. в мире было произведено около 300
млрд. киловатт-часов электроэнергии .Вполне реален прогноз , по которому в
2000 г. будет произведено 30 тыс. млрд. киловатт-часов.
Процессу открытия электродвигателя я и посвящаю мою работу.
2. Предыстория электродвигателя.
Сложный и трудный путь прошла наука о гальваническом электричестве, прежде чем был создан первый практически пригодный электродвигатель. В нем как в фокусе зеркала сконцентрировались все важнейшие открытия и изобретения многих ученых разных стран 20-х и 30-х гг. XIX в. Все началось с создания первого источника постоянного электрического тока - вольтова столба, с изучения химических, тепловых и магнитных действий тока и с установления законов электрической цепи. Важное значение для всей электротехники, для предыстории электродвигателя имело изучение магнитных действий тока. Впервые факт действия электрического тока на магнитную стрелку твердо был установлен Г. X. Эрстедом.
Интеpеcнa история этого открытия . Идею о cвязи между электрическими и магнитными явлениями Эpcтед высказал еще в первом десятилетии X1X в. Oн полагал, что в явлениях природы, несмотря на все их многообразие , имеются сходство, что все они связаны между собой. Pyкoвoдcтвyяcь этой идеей, он поставил перед собой задачу выяснить на опыте, в чем эта связь проявляется.
Эрстед открыл , что если над проводником , направленным вдоль земного меридиана , поместить магнитную стрелку , которая показывает на север , и по проводнику пропустить электрический ток , то стрелка отклоняется на некоторый угол .
После того , как Эрстед опубликовал свои открытия , многие физики
занялись исследованием этого явления .Французские ученые Био и Савар
постарались установить закон действия тока на магнитную стрелку , т.е.
определить , как и от чего зависит сила , действующая на магнитную стрелку
, когда она помещена около электрического тока .Они установили , что сила
действующая на магнитный полюс ( на конец длинного магнита) со стороны
прямолинейного проводника с током направлена перпендикулярно к кратчайшему
расстоянию от полюса до проводника , и модуль ее обратно пропорционален
этому расстоянию.
Познакомившись с работой Био и Савара можно было заметить , что для
расчета «магнитной» силы , т.е. , говоря современным языком , напряженности
магнитного поля , полезно рассматривать действие очень малых отрезков с
током на магнитный полюс. Из измерений Био и Савара следовало, что если
ввести понятие элемента проводника (l , то сила (F , действующая со
стороны этого элемента на полюс магнита , будет пропорциональна (F ~
((l/r2)*Sin (, где ( l - элемент проводника , ( - угол , образованным этим
элементом и прямой , проведенной из элемента (l в точку , в которой
определяется сила , а r - кратчайшее расстояние от магнитного полюса до
линии , являющееся продолжением элемента проводника .
После того , как было введено понятие силы тока и напряженности магнитного поля , этот закон стали записывать так :
?H = k*(I ?l/r2)*sin(, где ?H - напряженность магнитного поля , I – сила тока , а k – коэффициент , зависящий от выбора единиц , в которых измеряются эти величины .В международной системе единиц СИ этот коэффициент равен 1/4(.
[pic]
Рис. А. Oпыт Aмпepa по взаимодействию токов,
Hoвый важнейший шаг в исследовании электромагнетизма был сделан
французским ученым Ампером (1775— 1836) в 1820 г,
Paздyмывaя над открытием Эpcтeдa, Aмпep пришел к coвepшенно новым идеям, Oн
предположил, что магнитные явления вызывaютcя взаимодействием электрических
токов. Kaждый магнит представляет собой систему замкнутых электpичеcкиx
токов, плоскости кoтopыx перпендикулярны ocи магнита, Bзaимoдeйcтвиe
магнитов ,их притяжение и oттaлкивaние объясняются пpитяжeниeм и
отталкиванием, cyщecтвyющими между токами. Зeмнoй магнетизм также
обусловлен электрическими токами, которые протекают в земном шape. Этa
гепoтизa требовала, конечно, опытного пoдтвеpждeния. И Aмпep проделал целyю
cepию oпытoв для ее oбocнoвaния.
Пepвыe oпыты Aмпepa заключались в обнаружении сил, действующих между
проводниками, по которым течет электрический ток. Опыты показали, что два
прямолинейных проводника с током, расположенные параллельно друг другу,
притягиваются, если токи в них имеют одинаковое направление, и
отталкиваются, если направление токов противоположно (рис. А).
Ампep пoкaзaл тaкже, чтo витoк c тoкoм и cпиpaлевидный пpoвoдник c тoкoм
(coленoид) ведyт ceбя кaк мaгниты. Двa тaкиx прoвoдпикa пpитягивaютcя и
oттaлкивaютcя пoдoбнo двyм мaгнитным cтpелкaм (pиc.Б ).
[pic]
Рис Б. Рамка с током (слева) и соленоид с током (справа)
В опытах Ампера
Свои первые сообщения о результатах опытов Ампер сделал на заседаниях
Пapижcкoй академии наук осенью 1820 г. Пocлe этого он занялся разработкой
теории взaимoдейcтвия проводников, по которым течет электрический ток.
Ампер решил в основу теории взаимодействия токов положить закон
взaимoдейcтвия между элементaми токов. Нужно отметить, что Ампер говорил
уже не просто о взаимодействии элементов проводников, как Био и Савар, а о
взаимодействии элементов токов, так как к тому времени уже возникло понятие
силы тока. И это понятие ввел сам Aмпep. следуя взглядам того времени о подобии элементарных сил силам тяготения,
Ампер пpeдпoлoжил, что сила взаимодействия между элементами двух токов
будет зависеть от расстояния между ними и должна быть направлена по прямой,
соединяющей эти два элемента. проведя большое число опытов по определению взаимодействия токов в
проводниках различной формы и пo-paзнoмy расположенных друг относительно
друга, Aмпep в конце концов определил искомую силу. подобно силе тяготения
она оказалась обратно пропорциональной квадрату расстояния между элeментaми
электрических токов. В отличие от силы тяготения ее значение зависело еще
и от относительной ориентации элементов токов. формулу, которую получил Ампер, мы приводить не будем. она оказалась
неверной, потому что он заранее предположил, что сила взauмoдейcтвия между
элементами токов должна быть направлена по прямой, соединяющей эти
элементы. Ha самом же деле эта сила направлена под углом к этой прямой. однако вследствие того что Aмпep проводил опыты с замкнутыми постоянными
токами, он получал при расчетах по своей формуле правильные результаты.
Оказывается, что для замкнутых проводников формула Ампера приводит к тем же
результатам, что и исправленная впоследствии формула, выражающая силу
взаимодействия между элементами токов, которая по-npежнeмy носит название
закона Ампера.
Огромную роль в науке об электричестве сыграл созданный У. Стердженом в
1825 г. первый электромагнит. Его устройство было простым. Он представлял
собой стержень из мягкого железа, покрытого для изоляции лаком, на который
была намотана проволока. По сравнению с распространенными тогда постоянными
магнитами этот электромагнит обладал значительными преимуществами, так как
давал более сильный эффект.
Новый этап в развитии электротехники неразрывно был связан с именем М.
Фарадея. Электрический ток вызывал магнитные действия, и вполне естественно
было предположить, что и магнитные явления могут вызвать появление
электрического тока. В 1831 г. в результате многолетних опытов М. Фарадею
удалось осуществить «превращение магнетизма в электричество». Так было
сделано одно из великих открытий XIX в. открытие электромагнитной индукции,
оказавшее огромное воздействие на все последующее развитие электротехники.
Опытами Фарадея было установлено, что электромагнитная индукция возникает
как в неподвижном проводнике, находящемся в изменяющемся магнитном поле,
так и в проводнике, который перемещается в неизменном магнитном поле. Введя
понятие о магнитных силовых линиях, образующих магнитное поле, ученый
доказал, что наведение тока в проводнике будет происходить только тогда,
когда изменяется магнитный поток через контур. Открытие электромагнитной
индукции дало возможность Фарадею понять и причину вращения магнитной
стрелки при вращении диска, т. е. причину явления, открытого Араго. Он
объяснил это взаимодействием наводимых в диске токов с магнитным полем. На
основе изучения опыта Араго зародилась идея создания нового источника
электрической энергии, которая практически была реализована только во 2-й
половине XIX в.
В 1834 г. электротехника обогатилась новым фундаментальным законом,
открытым Э. X. Ленцем. Обобщая опыты Фарадея по электромагнитной индукции,
он в результате своих исследований сформулировал закон, дававший
возможность точно определить направление индуцированного тока. Так впервые
в науке был сформулирован фундаментальный принцип обратимости. Ленц не
только теоретически, но и экспериментально доказал, что, если вращать
катушку между полюсами магнита, она будет генерировать электрический ток, и
наоборот, если в нее послать ток, она будет вращаться. Это обстоятельство
значительно позднее сыграло решающую роль в развитии всего
электромашиностроения.