СВЧ диагностика газового разряда

Рассматриваемая в работе среда удовлетворяют условию: Та>>1 [1].

1.2. Методы диагностики газоразрядной плазмы

К определяемым параметрам плазмы относятся плотность n, электронная Te и ионная Ti температуры, интенсивность излучения, электрические и магнитные поля и другие. Понятие «температура» обычно используется условно, так как  распределение частиц по энергиям в лабораторной и космической плазме редко бывает максвелловским. В таких случаях речь идёт о кинетической температуре, т.е. о средней энергии частиц.

Методы диагностики плазмы делятся на активные и пассивные. Пассивные методы (например, измерение собственного излучения плазмы) не оказывают влияния на исследуемый объект. К ним относятся спектроскопические методы, а также фотографирование и измерения электромагнитных волн в широком диапазоне (тормозное излучение, циклотронное излучение и другие). В активных методах плазма непосредственно вовлекается в процесс измерения, и это может внести искажения в её состояние. Активные методы тем не менее используются наряду с пассивными, расширяя диапазон определяемых параметров. Наиболее распространены следующие активные методы диагностики плазмы: зондирование плазмы электрическими и магнитными зондами, СВЧ излучением, пучками заряженных и нейтральных частиц (корпускулярная диагностика плазмы) [3]. Корпускулярная диагностика плазмы может быть и пассивным методом, если исследуются свойства частиц, выходящих из объёма изучаемой плазмы.

Зонды вводятся внутрь плазмы для измерения её локальных параметров. Электрическим (ленгмюровским) зондом измеряют ток на него в зависимости от потенциала зонда относительно плазмы. Ток насыщения позволяет определить плотность плазмы, а форма характеристики при малых потенциалах даёт электронную температуру Te. Эти зонды находят широкое применение при исследовании холодной незамагниченной лабораторной плазмы и космической плазмы. Применение зондов при исследовании горячей плазмы ограничено вследствие загрязнений, вносимых материалом зонда, а также вследствие трудностей анализа измерений при наличии сильных магнитных полей.

Для измерения магнитных полей используются магнитные зонды – соленоиды различных размеров, вводимые в плазму. Такой зонд регистрирует dH/dt, а а для получения напряжённости магнитного поля Н сигнал с зонда интегрируется. В космической плазме магнитные поля измеряются феррозондами и квантовыми магнетометрами, а также по вращению плоскости поляризации.

Спектроскопическая диагностика плазмы является важнейшим методом исследования космической и лабораторной плазмы. Каждый из спектроскопических методов пригоден лишь в очень ограниченной области параметров плазмы. Анализ непрерывного спектра излучения плазмы позволяет определить Те и ne. Ширина и форма наблюдаемых спектральных линий могут дать информацию о температуре газа ( по эффекту Доплера), о плотности заряженных частиц (по эффекту Штарка), о магнитных полях и плотности заряженных частиц (по эффекту Зеемана). Вклад каждого из этих механизмов в наблюдаемый контур линии можно выделить даже в тех случаях, когда их влияние соизмеримо. Эффект Штарка сильнее всего влияет на далёкие «крылья» спектральной линии, Эффект Доплера - на центральную её часть, а зеемановские компоненты легко выделить, исследуя поляризацию. Анализ контуров линий излучения высокоионизированных атомов позволяет получить ионную температуру Ti горячей плазмы. Измерение рентгеновского тормозного излучения плазмы позволяет определить n и Te. Сплошной рентгеновский спектр излучения успешно регистрируется в лаборатории только для плазмы высокой плотности (n>>1017 см-3); при низкой плотности рентгеновское излучение возникает в основном из-за попадания частиц на стенки камеры [3].

Анализ рассеянного на свободно движущихся электронах электромагнитного излучения стал возможным только благодаря появлению и развитию лазеров большой мощности. При небольшой плотности плазмы интенсивность рассеянного излучения пропорциональна плотности. Контур линии рассеянного света определяется эффектом Доплера, причём, т.к. рассеяние происходит на электронах, а не на ионах, ширины спектральных линий составляют сотни ангстрем. В плотной плазме возникает рассеяние на флуктациях плотности зарядов, и линия рассеянного излучения имеет в центре довольно острый пик, близкий по форме ионному доплеровскому [3,4].

Кроме основного максимума, соответствующего частоте падающего излучения, наблюдаются максимумы комбинационного рассеяния на шумах плазмы, позволяющие получить информацию об уровне её турбулентности. По положению комбинационных максимумов, отвечающих ленгмюровским плазменным частотам, определяют плотность плазмы. Сложность этих исследований заключается в том, что при малых плотностях (n<<1012 см-3) трудно выделить сигнал на фоне излучения, рассеянного на деталях установки, а при n ~ 1017 см-3 сильный фон создаёт собственное излучение плазмы [4].

Фотографирование плазмы в различных спектральных диапазонах позволяет грубо оценить пространственное распределение n и Te. Особенно полезны фотографии с помощью камеры-обскуры в мягком рентгеновском излучении. Сверхскоростная фотография позволяет понять динамику развития неустойчивостей и получить информацию о характере взаимодействия плазмы с магнитным полем [4].

Зондирование плазмы СВЧ излучением является одним из удобных методов определения ne (особенно для космической плазмы). Он основан на зависимости диэлектрической проницаемости ε плазмы от её плотности:

ε=1-ω2p/ω2, где ωp – плазменная частота. Каждому значению ωp соответствует определённая критическая электронная плотность

nкрит=meω2p/4πe2,

где me – масса электрона. Если частота падающей электромагнитной волны ω>ωp, сигнал проходит через плазму, при ω<ωp плазма отражает волны. Этот метод широко используется для зондирования ионосферы, а также при исследовании лабораторной плазмы.


1.3. Волноводы

Для передачи микроволн, т. е. волн, длина которых изме­ряется сантиметрами или миллиметрами, применяются волно­воды - полые металлические трубы. Развитая теория длинных линий основывалась на предположении малости поперечных размеров всех проводов по сравнению с длиной волны. При очень коротких волнах удовлетворить этому условию трудно и нельзя пользоваться понятиями распределенных параметров. Кроме того, в микроволновом диапазоне сильно растут потери и по этой причине применяются волноводы.

Волноводы имеют существенное отличие от передающих ли­ний. В линии ток течет по одному проводнику и обратно – по другому. В волноводе ток течёт в одном направлении по одной части стенки, а в другом направлении - по другой. Хотя части стенки электрически соединены друг с другом, но короткого за­мыкания все же не происходит. Поэтому главным является электромагнитное поле внутри трубы в отличие от двухпровод­ной линии, в которой рассматриваются ток и напряжение.

Идея о пропускании электромагнитных волн по полым ме­таллическим трубам возникла давно и родилась по аналогии прохождения по ним акустических волн. Возможность распро­странения акустических волн по трубам любого сечения обес­печивается продольностью этих волн. Прохождение же радио­волн по трубам принципиально отличается тем, что эти волны поперечны и вследствие этого всегда существует некоторое пре­дельное или критическое значение длины волны λпр, которое ограничивает возможность распространения по данной трубе более длинных волн. Все волны, более длинные, чем предель­ная, не распространяются, и поэтому для них волновод играет роль фильтра. Могут быть также и чисто диэлектрические вол­новоды, в которых электромагнитная энергия концентрируется внутри диэлектрического стержня с большой диэлектрической проницаемостью. Процесс распространения волны в таком стержне подобен явлению концентрации света внутри струи воды, вытекающей из сосуда. Диэлектрические волноводы ис­пользуются в волоконной оптике. Применение диэлектрических волноводов в сантиметровом диапазоне длин волн ограничи­вается из-за больших размеров, трудностей крепления и сочле­нения.

Практическое применение имеют металлические волноводы прямоугольного и кругового сечений. В волноводах могут рас­пространяться различные типы волн, отличающихся друг от друга структурой электрического и магнитного полей. Различ­ное распределение поля, которое возможно в волноводе, опре­деляется формой и размерами волновода, способом его возбуж­дения и граничными условиями. Каждое из этих возможных распределений называется типом волны [6].

Граничные условия, как известно, заключаются в следую­щем: на поверхности проводника, находящегося в переменном во времени электромагнитном поле, электрическое поле всегда перпендикулярно поверхности, а магнитное - параллельно. Другими словами, граничные условия состоят в том, что тан­генциальная составляющая электрического поля на поверхно­сти идеального проводника равна нулю и нормальная состав­ляющая магнитного поля на поверхности идеального проводни­ка равна нулю, т. е. магнитные силовые линии параллельны по­верхности проводника. Эти условия на поверхности идеального проводника, т. е. проводника, сопротивление которого равно нулю, запишутся в виде таких уравнений:

Et =0, HN =0,

где индексы t и N обозначают соответственно тангенциальную и нормальную составляющие [6].

В проводнике с потерями возможно наличие слабого танген­циального электрического поля на поверхности.

Волны в прямоугольных и круглых волноводах можно раз­делить на два типа: ТЕ-волны - поперечные электрические или продольные магнитные, что означает наличие продольной со­ставляющей магнитного поля, и ТМ-волны -  поперечные маг­нитные или продольные электрические, имеющие составляющую электрического поля вдоль волновода. Применяются также обозначения Н и Е вместо ТЕ и ТМ соответственно, Н и Е от­носятся к тому полю, которое имеет продольную составляющую. Например, волна ТЕ01 иногда называется волной Н01 волна ТМ11 называется Е11 и т. д. [7]. Эти волны образуются в волноводе в результате интерференции плоских волн. Для того чтобы кон­кретно обозначить тип волны, к основным буквам добавляют индексы, и общее обозначение будет ТЕmn или ТМmn, где ин­декс m указывает число полупериодов пространственного изме­нения интенсивности электрического поля вдоль малой стороны поперечного сечения волновода, а n - число полупериодов про­странственного изменения электрического поля вдоль большой стороны волновода (в направлении z). Иногда индексам при ТЕ и ТМ придается противоположное значение, т. е. первый ин­декс означает число полупериодов по большей стороне, а вто­рой - по меньшей стороне. Поскольку все процессы в волново­дах линейны, в них могут одновременно иметь место волны всех типов ТЕ и ТМ, для которых выполняются условия пре­дельной волны. Для того чтобы в волноводе существовал толь­ко один тип волны, необходим соответствующий способ ее воз­буждения. На практике в прямоугольных волноводах в основ­ном используется только один тип волны, обозначаемый индек­сом ТЕ01 или Н01. Он имеет наиболее простую структуру поля.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать