Сверхпроводимость и ее применение в физическом эксперименте
Министерство общего и профессионального образования
Пермский Государственный университет имени А.М. Горького
Кафедра экспериментальной физики
Курсовая работа
Сверхпроводимость и ее использование для проведения физических измерений
Исполнитель: студент первого курса
Физического факультета
Перевозчиков А.Ю.
Руководитель: старший преподаватель кафедры экспериментальной физики кандидат физ. - мат. Наук
Лунегов И.В.
Пермь 1999 г.
ВВЕДЕНИЕ. 3
Из истории 3
Электрометры и электроскопы 3
Терминология и теоретические основы 3
Пределы чувствительности приборов различного типа 4
Предельная чувствительность и метод спадания (утечки) 4
ТЕОРИЯ СВЕРХПРОВОДИМОСТИ 5
Идеальный проводник и сверхпроводник 6
Эффект Мейснера 6
Основы микроскопической теории сверхпроводимости 9
ИСПОЛЬЗОВАНИЕ СВЕРХПРОВОДИМОСТИ. 11
Основные характеристики композитных ВТСП-проводников 12
КВАНТОВЫЙ МАГНИТОМЕТР 14
Литература 17
ВВЕДЕНИЕ.
Из истории
В «кратком руководстве к физике», изданном в Санкт-Петербурге в начале
XIX века, говорится: «Физика есть столько приятная, сколько и полезная
наука, толкующая свойства тел или предметов, нас окружающих. Свойства тел
познаются или через наблюдения, когда тело рассматривается в естественном
состоянии, то есть так, как оно есть, или через опыты, когда тело приводят
в такое состояние, до какого оно само дойти никогда не может» В общем, всё
правильно. Физик тем и отличается от натуралиста, что он не только
наблюдает, но и исследует природу, ставя опыты, приводя тела в такое
состояние, до какого они сами дойти, не могут. Физика - приятная наука,
поскольку дарит исследователю минуты вдохновения, сладость которых
скрашивает годы труда и тревог. Тревог, потому что результат опыта - число
- должен быть подвергнут строгой обработке, контролю и анализу на всех
этапах эксперимента, потому что выбор методик неоднозначен и зависит от
квалификации и интуиции исследователя, потому что появление новых
экспериментальных возможностей побуждает его самого и других к постоянной
проверке и уточнению уже полученных результатов.
Ещё в недалёком прошлом для точных измерений изменений зарядов
использовались электрометры и электроскопы.
Я счёл нужным уделить электрометрам и электроскопам немного места в моей
курсовой.
Электрометры и электроскопы
Терминология и теоретические основы
Определения: не всегда бывает ясно, что именно отличает электрометр от
электроскопа, и вследствие этого в литературе существует некоторая
путаница. Для наших целей полезно установить следующие различия:
электроскоп представляет собой электростатический прибор, для работы, с
которым требуется только одна измеряемая разность потенциалов, для работы
электрометров необходимо наличие добавочной разности потенциалов. Примерами
подобных приборов являются обычный электроскоп с золотыми листочками и
квадрантный электрометр (В русской литературе приняты другие определения
для электроскопов и электрометров - первый является индикатором, а второй
измерителем заряда. Указанные ранее признаки относятся к способам включения
электрометра).
Измерения методом постоянных отклонений
В некоторых случаях желательно применять вместо метода утечки (спадающего
отсчёта) постоянные отклонения. Это можно сделать, пользуясь электрометром
для измерения падения напряжения на фиксированном сопротивлении.
Предположим, что нам желательно измерить постоянную источника ионов I.
Пусть емкость внешней системы, относительно земли будет С1 и электрометра
С2 и пусть падение напряжения измеряется на сопротивлении R1. Тогда i1+i2= I( , i1=V/R1 , i2=dQ2/dt=C2*dV/dt , I=dQ1/dt+I’ ,
V=i1R1 .
Уравнение для потенциала на электрометре тогда будет:
V=[ I-(C1+C2)*dV/dt]*R1
Решая и подставляя граничные условия , t=0, V=0, получим:
V=I*R1 *[ 1-e-t/(C1+C2)*R1].
Таким образом, потенциал на электрометре экспоненциально возрастает. Если
произвольно условиться, что мы будем ждать до тех пор, пока отклонение
составит 99% окончательного отклонения, тогда мы должны ожидать время
t=4.6*R1*C, где C=C1+C2 .Спустя это время, отклонение будет приблизительно
V*SV . Если мы измеряем I методом утечки (спадания), то мы должны были бы
иметь то же самое за время R1C. Разность отсчётов, конечно, будет
обусловлена тем обстоятельством, что во втором случае скорость спадания
постоянна, тогда как в первом случае начинаются отклонения с той же
скоростью, как если бы R1=(, но потом постепенно замедляются и становятся
очень медленными по сравнению со вторым случаем.
Поэтому для измерения слабых токов значительно более благоприятные
результаты можно получить, применяя метод спадания (утечки). Большие же
точки удобнее измерять методом постоянных отклонений. Метод спадания можно
применять и для измерения относительно сильных токов, но в этом случае для
удлинения времени спадания следует подключить емкость соответствующей
величины.
Пределы чувствительности приборов различного типа
Пределы чувствительности к зарядам электроскопа и электрометра: для
первого максимальная чувствительность к заряду выражается формулой:
(SQ)MAX = 1/2*(C*K)-1/2= 1/(2*V0*b) , и для последнего:
(Sq)MAX = 1/2*(2*C*K)-1/2 =1/(4*V0*b)
Ёмкость электроскопа без подводящих проводников зависит от особенностей
его конструкции. Для электроскопа Вульфа или электроскопов крутильного типа
она обычно бывает между 0.4 и 1 см. Ёмкость же электрометра с добавленной к
нему внешней ёмкостью бывает порядка 20 - 100 см. Восстанавливающий момент
K подвеса можно в каждом приборе уменьшать до тех пор, пока замедление
движения не сделает прибор утомительным в работе или, как в случае
большинства электроскопов, пока потенциал не сделается слишком малым, чтобы
убрать все ионы. Так как камеру электрометра можно откачать, то легко
подобрать такое давление, чтобы движение бисквита (стрелки на электрометре)
сделалось затухающим критически.
Если камера электроскопа не откачана, то рабочий период может сделаться
чрезвычайно большим, когда будет достигнута максимальная чувствительность.
Делая бисквитики, по возможности малыми и лёгкими, можно достичь очень
многого в этом направлении, как это сделано в электрометрах Линдемана,
Перукка или струнных электрометрах.
Предельная чувствительность и метод спадания (утечки)
Скорость спадания электрометра в течение одного отсчёта часто является
ограничивающим фактором чувствительности. Она иногда делается слишком малой
и утомительной для отсчётов прежде, чем будет достигнута максимальная
чувствительность. Одной из главных причин, заставляющих не пользоваться
методом спадания, является постепенное расхождение между положениями
электрической и механической нулевых точек. Отклонение, обусловленное
расхождением нулей, может быть во много раз больше действительного
измеряемого отклонения. Спадание, обусловленное побочными причинами, может
получиться за счёт:
Флуктуаций напряжения в батарее
Неупругими изменениями натяжения в подвесе
Если бы скорость утечки была постоянной, то можно было бы сделать
некоторые упрощающие допущения, однако существует целый ряд факторов,
которые самым различным образом зависят от напряжения, температуры,
влажности и т. п., и потому весьма трудно или вовсе не возможно устранить
полностью или учесть эти колебания скорости утечки. Это особенно
справедливо по отношению к электрометрам с электронными лампами, даже если
применяются схемы с компенсацией.
ТЕОРИЯ СВЕРХПРОВОДИМОСТИ
Сверхпроводимость - физическое явление, наблюдаемое у некоторых веществ
(сверхпроводников), при охлаждении их ниже определенной критической
температуры Tс, и состоящее в обращении в нуль электрического сопротивления
постоянному току и выталкивания магнитного поля из объема образца (эффект
Мейснера). Явление открыто в 1911 г. Х. Каммерлинг-Оннесом. Изучая
температурный ход электросопротивления Hg, он обнаружил, что при
температуре ниже 4,22К Hg практически теряет сопротивление.
Далее оказалось, что при крайне низких температурах целый ряд веществ
обладает сопротивлением, по крайней мере, в 10-12 раз меньше, чем при
комнатной температуре. Эксперименты показывают, что если создать ток в
замкнутом контуре из сверхпроводников, то этот ток продолжает циркулировать
и без источника ЭДС. Токи Фуко в сверхпроводниках сохраняются очень долгое
время и не затухают из-за отсутствия джоулева тепла (токи до 300А
продолжают течь много часов подряд). Изучение прохождения тока через ряд
различных проводников показало, что сопротивление контактов между
сверхпроводниками также равно нулю. Отличительным свойством
сверхпроводимости является отсутствие явления Холла. В то время как в
обычных проводниках под влиянием магнитного поля ток в металле смещается, в
сверхпроводниках это явление отсутствует. Ток в сверхпроводнике как бы
закреплен на своем месте.
Сверхпроводимость исчезает под действием следующих факторов:
1) повышение температуры;
2) действие достаточно сильного магнитного поля;
3) достаточно большая плотность тока в образце;
С повышением температуры до некоторой Tс почти внезапно появляется
заметное омическое сопротивление. Переход от сверхпроводимости к
проводимости тем круче и заметнее, чем однороднее образец (наиболее крутой
переход наблюдается в монокристаллах).
Переход от сверхпроводящего состояния в нормальное можно осуществить
путем повышения магнитного поля при температуре ниже критической Tс.
Минимальное поле Bс, в котором разрушается сверхпроводимость, называется
критическим магнитным полем. Зависимость критического поля от температуры
описывается эмпирической формулой.
Вс = B0 [1 - (T/Tс)2], где В0 - критическое поле, экстраполированное к абсолютному нулю
температуры.
Для некоторых веществ, по-видимому, имеет место зависимость от Т1 . При
действии магнитного поля на сверхпроводник наблюдается особого вида
гистерезис, а именно если, повышая магнитное поле уничтожить
сверхпроводимость при H=Ht (H - сила поля, Ht - повышенная сила поля:
Ht = a*(Tс2 - T2)) , то с понижением интенсивности поля
сверхпроводимость появится вновь при поле Ht(< Ht, dH = Ht - Ht( меняется
от образца к образцу и обычно составляет 10( Ht. Повышение силы тока также
приводит к исчезновению сверхпроводимости, то есть при этом понижается Tс.
Чем ниже температура, тем выше та предельная сила тока it при которой
сверхпроводимость уступает место обычной проводимости.
Сверхпроводимость наблюдается как у элементов, так и у сплавов и
металлических соединений. Сверхпроводимость есть у Hg, Sn(белое), Pb, Tl,
Tn, Ga, Ta, Th, Ti, Nb (иногда Cd).