tз = 0,5×(t¢эк + t²эк ) + (40¸60) = 0,5×(154,56+242,96) + 50 = 248,76 оС;
По номограмме находим Сг=0,97; aн=100 ккал/м2×ч×оС; Þ aл = aн×а×Сг =100×0,0897×0,97= 8,7 ккал/м2×ч×оС;
При расчёте экономайзера на величину aл необходимо ввести поправку, связанную с наличием газового объёма, свободного от труб перед этими поверхностями и между отдельными пакетами поверхностей:
Где Тк - температура газов в объёме камеры, (К); lоб и lп -- соответственно суммарная глубина пучка и суммарная глубина газового объёма до пучка, м; А – коэффициент: при сжигании мазута А=0,3;
9.1.6)Температурный напор:
Þ температурный напор с достаточной точностью можно найти как:
9.1.7)Определим расчётную поверхность:
Невязка:
Невязка > 2% Þ вносим конструктивные изменения.
9.1.8)Найдем требуемую длину змеевика:
Следовательно, принимаем Z2р равное 36, то есть Z21 ряда =20, Z22 ряда =16 Þ во втором пакете убираем одну сдвоенную петлю.
Для первого пакета:
Для второго пакета:
Высота экономайзера:
Расчёт закончен
IX.II Расчёт воздушного подогревателя
9.2.1) По чертежам парового котла составляем эскиз воздухоподогревателя в двух проекциях на миллиметровой бумаге в масштабе 1:25, на котором указывают все конструктивные размеры.
По чертежам и эскизу заполняем таблицу:
Конструктивные размеры и характеристики воздухоподогревателя
|
Наименование величин |
Обозн |
Раз-ть |
Величина |
||||
Наружный диаметр труб |
d |
м |
0,04 |
|
||||
|
Внутренний диаметр труб |
dвн |
м |
0,037 |
||||
|
Количество труб в ряду |
z1 |
- |
72 |
||||
|
Количество рядов труб по ходу газов |
z2 |
- |
33 |
||||
|
Шаг труб: поперечный |
S1 |
м |
0,056 |
||||
|
продольный |
S2 |
м |
0,042 |
||||
|
Относительный шаг труб: поперечный |
S1/d |
- |
1,4 |
||||
|
продольный |
S2/d |
- |
1,05 |
||||
|
Расположение труб |
- |
- |
шахматное |
||||
|
Характер омывания труб газами |
- |
- |
продольный |
||||
|
Характер омывания труб воздухом |
- |
- |
поперечный |
||||
|
Число труб, включённых параллельно по газам |
z0 |
- |
2376 |
||||
|
Площадь живого сечения для прохода газов |
Fг |
м2 |
2,555 |
||||
|
Ширина газохода |
b |
м |
4,144 |
||||
|
Высота одного хода по воздуху (заводская) |
hх |
м |
2,1 |
||||
|
Площадь живое сечение для прохода воздуха |
Fв |
м2 |
2,6544 |
||||
|
Поверхность нагрева ВЗП |
Hвп |
м2 |
2413,99 |
||||
Примечание: Трубчатые воздухоподогреватели, как правило, выполняются с вертикальным расположением труб в газоходе, внутри которых движутся газы, а воздух омывает шахматно расположенный пучок труб снаружи, омывание поперечное; взаимное движение сред характеризуется перекрёстным током. Число ходов воздуха не меньше двух.
Расчётно определим число труб, включенных параллельно по газам:
Площадь живого сечения для прохода газа:
Площадь живого сечения для прохода воздуха (по заданной заводской конструкции):
Поверхность нагрева ВЗП:
9.2.2) С использованием ранее выполненых расчётов для теплового расчёта ВП составляют таблицу исходных данных:
Наименование величин |
Обознение |
Размерность |
Величина |
Температура газов до воздухоподогревателя |
uэк² |
0С |
301,87 |
Температура газов за воздухоподогревателем |
uух |
0С |
150 |
Температура воздуха до воздухоподогревателя |
t¢в |
0С |
30 |
Температура горячего воздуха после воздухоподогревателя |
tгв |
0С |
220 |
Объёмы газов при среднем избытке воздуха |
Vг |
м3/кг |
14,0698 |
Теоретический объём воздуха |
V0 |
м3/кг |
10,62 |
Температура воздуха до воздухоподогревателем к теоретически необходимому |
b²вп |
-- |
1,05 |
Объёмная доля водяных паров |
rH2O |
-- |
0,1102 |
Тепловосприятие по балансу |
Qбвп |
ккал/кг |
695,85 |
Находим скорости газов и воздуха:
Скорости газов и воздуха должны быть в пределах допустимых нормативных значений в зависимости от вида топлива и характеристик зол. В курсовом проекте допустимая скорость газов составляет: Wг=12±3 м/с, а Wв = (0,5¸0,6)×Wг = 5,07¸6,08 м/с, однако полученная скорость воздуха больше допустимой Þ принимаем Wв’=6,08 м/c.
Пересчитываем:
9.2.3)Коэффициент теплопередачи для воздухоподогревателя в целом определяют по средним значениям необходимых величин.
где x = 0,7
Коэффициент теплоотдачи от газов к стенке для воздухоподогревателя определяют по формуле:
При продольном омывании трубной поверхности дымовыми газами коэффициент теплоотдачи конвекцией, отнесённый к полной расчётной поверхности, определяют по номограмме 14:
aн=29 ккал/м2×ч×оС; добавочные коэффициенты: Сф=1,1; Сl=1; Þ
aк = aн×Сф×Сl = 29×1,1×1 = 31,9 ккал/м2×ч×оС;
При поперечном омывании шахматных пучков дымовыми газами коэффициент теплоотдачи конвекцией, отнесённый к полной расчётной поверхности, определяют по номограмме 13:
aн= 56 ккал/м2×ч×оС; добавочные коэффициенты: Сz=1; Сф=0,98; Сs=1; Þ
aк = aн×Сz×Сф×Сs = 56×1×0,98×1 = 54,88 ккал/м2×ч×оС;
9.2.4) Температурный напор:
Þ температурный напор можно найти как:
Поправочный коэффициент y определяют по номограмме по безразмерным параметрам:
По R и Р находим y= 0,96
9.2.5)Определим расчётную поверхность:
Невязка:
Невязка > 10% Þ вносим конструктивные изменения.
Принимаем число ходов n=3.
Пересчитываем:
высота трубного пучка:
высота хода:
расчетная площадь живого сечения для прохода воздуха:
действительная скорость воздуха:
Невязка:
Невязка <10 % Þ расчёт закончен.
Список литературы
1) Тепловой расчёт котельных агрегатов. (Нормативный метод)/Под редакцией Н.В. Кузнецова. – М.: Энергия, 1973. –296с.
2) Резников М.И. Парогенераторные установки электростанций. – М.: Энергия, 1974. –360с.
3) Методические указания по определению коэффициента полезного действия паровых котлов / Парилов В.А., Ривкин А.С., Ушаков С.Г., Шелыгин Б.Л. – Иваново, 1987. –36с.
4) Методические указания по определению коэффициента теплопередачи и температурного напора при расчёте поверхностей нагрева паровых котлов / Парилов В.А., Ривкин А.С., Ушаков С.Г., Шелыгин Б.Л. – Иваново; ИЭИ, 1987.
5) Методические указантя по поверочному расчёту топочной камеры и фестона паровых котлов / Парилов В.А., Ривкин А.С., Ушаков С.Г., Шелыгин Б.Л. – Иваново; ИЭИ, 1987.
6) Методические указания по конструкторскому расчёту пароперегревателя и хвостовых поверхностей паровых котлов / Парилов В.А., Ривкин А.С., Ушаков С.Г., Шелыгин Б.Л. – Иваново; ИЭИ, 1991. –36с.
7) Александров В.Г. Паровые котлы средней и малой мощности. – Л.: Энергия, 1972.—200с.
8) Ковалёв А.П., Лелеев Н.С., Виленский Т.В. Парогенераторы: Учебник для ВУЗов. – М.: Энерго- атомиздат, 1985. –376с.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9