Термодинамическое равновесие гетерогенных плазменных систем с существенной ионизацией компонентов

Статистическую сумму, связанную с поступательными степенями свободы, определим, основываясь на квазиклассическом приближении квантовой механики  [6, с.198]. Размер шестимерной ячейки, соответствующей одному состоянию, находим из соотношения неопределенности


             .                                          (1.1.10)

 

Найдем число состояний, приходившихся на весь фазовый объем системы, отвечающий интервалу скоростей  ,во всем объеме плазмы V:

     

        .                                               (1.1.11)


Подставляя (1.1.11) в выражение для статистической суммы , получаем


                                     (1.1.12)


Заменяя суммирование по скоростям интегрированием, находим


                                                              (1.1.13)


Используя полученное выражение для частиц всех сортов, участвующих в реакции (1.1.1), и учитывая (1.1.8), преобразуем (1.1.5) к виду


                                                     (1.1.14)


Эта формула, определяющая константу ионизационного равновесия, называется формулой Саха. По аналогии с предыдущим можно получить цепочку уравнений Саха для последовательности степеней ионизации атома, т.е. для реакций


                                 ,


где К – кратность ионизации. При этом в формулах Саха


                                        (1.1.14’ )

будут фигурировать потенциалы ионизации Ik, которые равны энергии ионизации иона с зарядом Кe. Поскольку значения Ik для К>1 быстро возрастают , в области температур 1000…3000 К, характерной для низкотемпературной плазмы, будет в основном наблюдаться однократная ионизация атомов. Закон сохранения числа частиц и заряда α определенного сорта совместно с цепочкой уравнений Саха (1.1.14') представляет замкнутую систему уравнений, описывающую ионизационное равновесие в газовой плазме.

В качестве примера рассмотрим ионизацию атомов калия в аргоне. При неизменной температуре Т плазмы повышение исходного содержания атомов калия nA приведет к увеличению равновесной плотности электронов в плазме. Поскольку , в пренебрежении более высокими степенями ионизации атомов калия запишем систему ионизационных уравнений:


                      (1.1.15)(1.1.15’)(1.1.15’’)


где (1.1.15) – уравнение Саха для однократной ионизации; (1.1.15’) – закон сохранения числа частиц (исходное содержание присадки калия в результате реакций ионизации не меняется); (1.1.15’’) – закон сохранение заряда (концентрация электронов в системе определяется числом ионизованных атомов калия).

Вводя обозначение


                                                    (1.1.16)


и используя (1.1.15’) и (1.1.15’’), преобразуем (1.1.15) к виду


                                          .                              (1.1.17)


Последнее уравнение имеет очевидное решение


                            ,                                             (1.1.18)


которое и определяет однократную ионизацию атомов калия в плазме по Саха.

На рис.1. показаны расчетные зависимости концентрации электронов в НТП, образованной атомами аргона и калия для температур плазмы Т= 1000, 2000, 3000 К, от исходного содержания атомарного калия nA.

Источниками электронов в высокотемпературном электронейтральном газе могут быть и частицы КДФ с малой работой выхода электронов W. В этом случае появляется специфическая плазменная среда – плазмозоль [7], т.е. система нейтральный молекулярный газ с высоким потенциалом ионизации + свободные электроны, эмиттированные частицами КДФ + заряженные макрочастицы, обменивающиеся электронами с газовой фазой. Отличительные черты такой системы: возможность приобретения частицами КДФ больших (макроскопических)








Рис.1. Ионизация атомов калия в аргоне (концентрационная зависимость)


 
 



зарядов, наличие у макрочастиц собственного объема, сравнимого с размерами микронеоднородностей в системе, фактически всегда наблюдаемая полидисперсность КДФ.

В связи с широким применением гетерогенных плазменных сред в ряде современных областей энергетики(МГД–генераторы на твердом топливе, управление процессом горения  [8]) и технологии (высокотемпературные гетерогенные процессы  [9], плазменное напыление  [10] и др.), описание термоионизации в НТП с КДФ вызывают в настоящее время значительный интерес  [11]. Возможность воздействия на ионизацию среды посредством частиц КДФ была доказана в экспериментах по измерению концентрации электронов в плазме углеводородных пламен  [12,13].


Система идентичных частиц в буферном газе.


Наиболее простая модель плазмозоля  [14]  предполагает, что имеется “ансамбль” идентичных сферических частиц КДФ, обменивающихся электронами с химически нейтральным буферным (несущим) газом. Система неограниченна, и температура всех подсистем: газа, КДФ, электронов – постоянна и равна Т. Равновесная реакция ионизации макрочастицы с зарядовым числом

 

                                                                            (1.2.1)


как и ранее, описывается методами расчета равновесных химических систем. Поскольку конденсированные частицы (КЧ) в такой модели представляют собой фактически гигантские молекулы, то в константы равновесия реакций (1.2.1) (соответствующие константы Саха) должна войти разность энергии до и после ионизации КЧ. Эта размерность и является потенциалом ионизации m – кратно заряженной частицы КДФ, который в моделях выбирается равным


,                                                            (1.2.2)


где W – работа выхода с поверхности вещества частиц; e – заряд электрона; rp – радиус сферической частицы.

Выбор потенциала ионизации частицы КДФ в виде (1.2.2) фактически означает предположение, что электрон, покидающий КЧ, затрачивает энергию, равную работе выхода с поверхности вещества незаряженной частицы, плюс работа, связанная с кулоновским взаимодействием между эмиттирующей КЧ и излучаемым электроном. Она равна кулоновской энергии электрона на поверхности КЧ только для уединенных макрочастиц или для достаточно разреженных систем. Действительно, в этом случае можно пренебречь эффектами объемного заряда и их влиянием на работу по удалению электрона.

На основе идеально-газовых представлений, как и ранее [(1.1.14), (1.1.14’), (1.1.15), (1.1.15’), (1.1.15’’)], получим соотношение для концентраций КЧ:


                                                   (1.2.3)


где Qm, Qm-1 – статистический вес соответственно m- и (m-1) – кратно ионизованной частицы КДФ; me – масса электрона; h и k – постоянные Планка и Больцмана.

Обозначив n0 концентрацию нейтральных КЧ в системе, построим цепочку уравнений Саха (1.2.3), считая что для макрочастиц Qm/Qm-1=1. Частицы плазмозоля с положительными зарядами дают последовательность уравнений, которыми определяются все более высокие степени ионизации отдельной КЧ. Таким образом, получаем набор уравнений для процессов термоэмиссии  электрона с поверхности идентичных сферических частиц с зарядами   qm-1=(m-1)e, где m = 1, 2, 3, …, :


                                           (1.2.4)

                                                  

В уравнениях (1.2.4) К обозначена константа Саха для процесса термоэмиссии электрона с поверхности незаряженной частицы плазмозоля, т.е. для реакции    . Выражая из m – го уравнения  с помощью , которое в свою очередь, можно выразить    из (m-1) – го уравнения, и так далее, продолжая этот процесс вплоть до первого уравнения системы (1.2.4), получаем 

 

                   .                         (1.2.5)

                         

После некоторых преобразований произведение в последней формуле запишем так:


                            .                                          (1.2.6)


В данном случае введены обозначения


                                                                           (1.2.7)


Аналогично для отрицательных степеней ионизации дисперсных частиц получим:


             (1.2.8)


По последнему уравнению (1.2.8) найдем . Выразим  далее   из предыдущего уравнения этой системы и подставим его в выражение для . Продолжив, как и ранее, этот процесс вплоть до первого уравнения (1.2.8), окончательно получим


.                                       (1.2.9)


Уравнения (1.2.5) и (1.2.9) связывают концентрацию нейтральных частиц КДФ в плазмозоле с концентрациями m –кратно ионизованных положительных(1.2.9) макрочастиц. Совместно с законом сохранения заряда


                                                                 (1.2.10)


и условием сохранения полного числа КЧ в плазмозоле


                                                                       (1.2.11)

 (np – концентрация частиц КДФ) они позволяют определить замкнутую систему уравнений термоионизационного равновесия в плазмозоле идентичных частиц. Из (1.2.10) и (1.2.11) можно найти среднюю ионизацию частиц КДФ, т.е. их среднее зарядовое число:


                                                            (1.2.12)


и относительную концентрацию электронейтральных макрочастиц в системе


.                                       (1.2.13)


Как показал Саясов, соотношения, аналогичные (1.2.12) и (1.2.13), могут быть преобразованы с помощью эллиптических θ – функций к удобному для математического анализа виду:


                                                                     (1.2.14)


                                      (1.2.15)

 

Здесь

 

                                                          (1.2.16)

     m=1,2,… .

На основе таблиц θ –функций построены зависимости lg(ne/K) от lg(np/K) при

Рис.2.Область применимости приближения Эйнбиндера в координатах lg(rp), lg(T)

Страницы: 1, 2, 3, 4



Реклама
В соцсетях