. (2.1.3)
Уравнение (2.1.3) отражает факт электронейтральности плазмозоля. Локальные концентрации и связанны с усредненными по объему концентрациями ne и np больцмановскими соотношениями:
(2.1.4)
Отметим, что (2.1.4) справедливы только в случае слабой ионизации дисперсных частиц, т.е. при . В этом приближении они допускают линеаризацию.
Из уравнения (2.1.1), которое определяет избыточный заряд в окрестности рассматриваемой КЧ и условия, вытекающего из закона сохранения заряда для среды в целом,
znp-ne=0 , (2.1.5)
находим связь между распределением усредненного электростатического потенциала и избыточного заряда . Окончательно приходим к дифференциальному уравнению 2-го порядка для избыточного заряда в окрестности заданной КЧ:
. (2.1.6)
Посредством D2 (квадрат дебаевского радиуса для плазмозоля идентичных частиц) обозначена константа
(2.1.7)
Граничные условия для дифференциального уравнения (2.1.6) можно записать из следующих физических соображений:
1) в плазмозоле идентичных эмитирующих частиц усредненная плотность объемного заряда у поверхности КЧ должна определяться балансом потоков электронов эмиссии и прилипания (потока газовых электронов, поглощенных поверхностью КЧ);
2) на бесконечности (при r)плотность избыточного заряда должна обращаться в нуль. Таким образом, приходим к граничным условиям Дирихле (задаются значения самой функции – плотности избыточного заряда (r) на поверхности КЧ и вдали от нее):
θ(r)=θ; θ()=0. (2.1.8)
Отбросив растущее на бесконечности частное решение (2.1.6), представим выражение для избыточного заряда θ(r) в виде
(2.1.9)
Подставляя его в уравнение электронейтральности плазмоля (2.1.3) и производя интегрирование, получаем
. (2.1.10)
Таким образом, имеем трансцендентное уравнение для зарядового числа КЧ в плазмозоле. Поверхностная плотность избыточного заряда параметрически зависит от электростатического заряда z и определяется как
(2.1.11)
где Q – отношение статистических весов частицы p в зарядовых состояниях z+1 и z; Фz – работа выхода электрона с поверхности заряженной частицы радиуса rp.
Вследствие наличия собственных размеров частицы КДФ не могут приблизиться на расстояния r<2rp и поэтому объемный заряд на поверхности (при r=rp+0) КЧ равен плотности электронной компоненты.
Подставляя (2.1.11) в (2.1.10), получаем уравнение для среднего зарядового числа z КЧ в плазмозоле. Решив это уравнение относительно z и подставив найденное значение корня в условие электронейтральности среды (2.5), получим среднее значение концентрации электронов в газовой фазе:
ne=znp. (2.1.12)
Таким образом, уравнения (2.1.10) – (2.1.12) полностью решают вопрос об ионизационном равновесии в плазмозоле идентичных сферических частиц в рамках дебаевского рассмотрения.
2.2. Зависимость электронной концентрации от определяющих параметров плазмы.
Гетерогенная плазма, состоящая из двух подсистем: “частичной” – заряженных частиц КДФ и газовой – нейтрального буферного газа с эмитированными КДФ электронами, характеризуется параметрами, на основе которых можно однозначно в рамках той или иной модели рассчитать ее равновесный состав. Кроме термодинамических параметров (T, P, V), характеризующих плазму в целом, каждая из подсистем определяется своими параметрами. Для ансамбля макрочастиц КДФ – это их размер или функция распределения по размерам в полидисперсной системе, работа выхода W вещества частиц. Свойства атомарных частиц в газовой фазе определяются потенциалами ионизации Ij парциальными давлениями компонент Pj, т.е. счетными концентрациями атомарных частиц каждого сорта nAj.
Основная цель описания термической ионизации в любой из моделей – построение зависимостей электрофизических параметров системы (плазмы с КДФ) от ее определяющих параметров. При математической формулировке задачи физическая модель обычно сводится к решению соответствующей системы уравнений сохранения и кинетики, записанной для термодинамического равновесия. После преобразований системы ионизационных уравнений приходят в конечном итоге к решению трансцендентного уравнения (см., например (1.2.14)), выражающего функциональную связь между определяющими – исходными параметрами задачи и искомыми (в данном случае электрофизическими). Так, уравнение
(2.2.1)
связывает усредненный заряд дисперсной частицы, а значит, и концентрацию электронов ne=znp, со всеми остальными параметрами, характеризующими плазмозоль, а именно: температурой Т, размером частиц КДФ rp, их концентрацией np (входит в определение D), работой выхода с поверхности материала частиц W.
Таким образом, исследование зависимости концентрации электронов ne в равновесном плазмозоле идентичных частиц от определяющих параметров (Т, rp, np, W) можно проводить на основе анализа решения (2.2.1) в пространстве параметров задачи. Общие параметры Т, np характеризуют систему в целом, а rp, W определяют свойства отдельных макрочастиц. Если добавить сюда искомые параметры z и np, то каждая точка (Т, rp, np, W, z, ne) в пространстве параметров задачи будет определять некоторое состояние ионизации в плазмозоле. Причем реализующимся состояниям соответствуют точки, которые лежат на “поверхности”, задаваемой в пространстве параметров (2.2.1). Это уравнение множеству точек (Т, rp, np, W) ставит в соответствие множество решений задачи (z, ne).
Символически связь между z и определяющими параметрами запишем так:
F(z, T, W, np, rp)=0 (2.2.2)
3. Ячеечные модели плазмы, содержащей частицы.
Расчет равновесных состояний ионизации в системах с сильным кулоновским взаимодействием частиц конденсированной фазы (К-фазы) и газа, т.е. в случае, когда
, (3.1)
не может быть реализован в рамках дебаевского рассмотрения, так как в правой части уравнения Пуассона (2.1.2) не представляется возможным связать средние по объему концентрации заряженных частиц с их локальными концентрациями в системе координат выделенной КЧ. Это привело к появлению моделей, использующих решение нелинейного уравнения Пуассона в ограниченной области – ячейке [20]. В существующих моделях этого класса для плазмозолей концентрация электронов вблизи поверхности КЧ определена законом термоэмиссии, а область электронейтральности содержит одну – сферическая симметрия (модель Гибсона [20], ее модификация) или две – цилиндрическая симметрия – частицы КДФ одинакового размера, которые в последнем случае могут отличаться сортом.
Главная особенность этих моделей в сферически симметричном случае – предположение о том, что весь объем плазмы можно заменить совокупностью сферических ячеек, каждая из которых содержит строго одну из идентичных сферических частиц. Для случая двух сортов частиц К-фазы объем плазмозоля заменяется совокупностью цилиндрических ячеек, содержащих две либо одинаковые, либо различающиеся сортом дисперсные частицы. Граничные условия для нелинейного уравнения Пуассона (2.1.2) выбираются на поверхности КЧ и на границе ячейки. Эти идеи распространяются на случай существенной нелинейности в правой части (2.1.2).
Статистический подход к моделированию электрофизических свойств НТП с КДФ, по характеру используемых представлений также может быть отнесен к классу ячеечных. Здесь ограниченная область экранирования выделенной КЧ является усредненным по ансамблю Гиббса электронейтральным объемом, в котором КЧ находится в последовательные моменты времени. Рассмотрим специфические особенности ячеечного подхода согласно работе Гибсона [20], в которой впервые изучена возможность распространения результатов, полученных для индивидуальных частиц К-фазы в ячейке на весь объем, занятый гетерогенной плазмой.
3.1. Ионизация системы газ – частицы в модели Гибсона.
В состоянии термодинамического равновесия распределение потенциала и объемного заряда тесно связаны между собой и подчинены уравнению Пуассона (2.1.2). Термоионизационное равновесие системы газ – частицы будет полностью определено, если одновременно найдены оба распределения: заряда ρ и потенциала φ. Таким образом, описать ионизацию в плазме газ – частицы – значит решить уравнение Пуассона при некоторых упрощающих предположениях, используемых в модели.
В [20] предполагается, что в плазмозоле идентичных частиц (в системе макрочастицы + излученные ими электроны + электрически и химически нейтральный буферный газ) в состоянии термодинамического равновесия наблюдается однородная ионизация дисперсных частиц (все частицы К-фазы имеют один и тот же заряд q=ze, z – зарядовое число, е – элементарный заряд). Плазма электрически нейтральна, а распределения объемного заряда электронов и потенциала в плазме связаны больцмановским коэффициентом, т.е. электроны в поле частиц распределены по Больцману:
, (3.1.1)
где r – расстояние от центра макрочастицы; neb – концентрация электронов на расстоянии b от выделенной КЧ; - электростатический потенциал; k – постоянная Больцмана; T – температура; b – радиус сферически-симметричной ячейки, в которой, согласно основному допущению модели [20], частица КДФ оказывается полностью за экранированной электронным газом, т.е.
(3.1.2)
Радиус b определяется объемом, отведенным в плазмозоле на одну дисперсную частицу:
. (3.1.3)
Связь электронной плотности в ячейке с распределением электростатического потенциала задается уравнением (2.1.2), которое запишем:
. (3.1.4)
Учитывая граничные условия (3.1.2), имеем задачу Коши. Ее решение параметрически зависит от концентрации электронов на границе ячейки neb. Если при этом известна электронная концентрация на поверхности КЧ, т.е. для r=rp – радиусу частиц конденсата, приходим к замкнутой системе уравнений для определения концентрации электронов в плазме. Действительно, из уравнения Пуассона (3.1.4) находим параметрическую зависимость потенциала в ячейке от neb. Подставляя эту зависимость в распределение Больцмана (3.1.1) и учитывая, что , можно в символическом виде записать
. (3.1.5)
Таким образом, получили трансцендентное уравнение относительной переменной neb. Разрешив его относительно neb и подставив neb в уравнение, выражающее факт электронейтральности ячейки, получим значение среднего заряда КЧ в плазме:
. (3.1.6)
Окончательно средняя по объему концентрация электронов в плазмозоле:
. (3.1.7)
Изложенная последовательность шагов расчета ионизации плазмозоля дает возможность строить конкретные алгоритмы числовых расчетов, предполагающих их реализацию на ЭВМ. Расчеты, приведенные в [20] реализованы на основе подпрограмм, содержащих в своей основе три основных момента: вычисление зависимости ; определение концентрации электронов на границе ячейки решением трансцендентного уравнения относительно neb; вычисление заряда КДФ – z и средней концентрации электронов в объеме плазмозоля – ne. Концентрация электронов на внутренней границе ячейки в модели определяется законом термоэмиссии Ричардсона-Дешмана:
. (3.1.8)
Здесь К – коэффициент коррекции, учитывающий свойства поверхности КЧ (содержит коэффициент отражения электронов поверхностью дисперсных частиц); В=4,83·1021К-3/2.
3.2. Режим слабого экранирования
Прежде чем составлять алгоритм решения задачи с термической ионизации монодисперсного плазмозоля в рамках ячеечной модели, преобразуем (3.1.1) – (3.1.8) к виду, удобному для программирования. Если нормировать значения потенциала на kT, а расстояния посредством b – радиуса ячейки, то математическую модель задачи можно записать как
(3.2.1)
где введены обозначения:
(3.2.2)
Db – дебаевский радиус электронов, локализующихся на границе ячейки. Так как вблизи этой границы вследствие непрерывности нормированного потенциала у и его производной dy/dx они оказываются близкими к нулю, экспоненту, входящую в правую часть уравнения Пуассона (3.1.1), разложим в ряд по малому параметру (x-1):
(3.2.3)
После дважды интегрированного уравнения, вернемся к безразмерному потенциалу у (умножим выражение на 3/с и разделив на x), приходим к зависимости
(3.2.4)
Уравнение (3.2.4) определяет связь безразмерного потенциала у в ячейке с концентрацией свободных электронов на ее внешней границе neb, которая входит в выражение для константы с.
Режим слабого экранирования, описываемый (3.2.4), наиболее часто реализуется на практике в гетерогенной плазме (плазме с КДФ) для микрочастиц в случае, когда rp/DS<5. В таком режиме плотность электронов в ячейке изменяется незначительно (практически однородна), а потенциал в окрестности КЧ кулоновский, т.е. . Таким образом, если среднее по объему значение плотности электронов равно их концентрации на границе ячейки neb, имеем однородное распределение электронной компоненты и отсутствие экранирования. Малое отличие этих плотностей указывает на слабое экранирование КЧ.
Выводы
1. С учетом областей термодинамических параметров реально действующих плазменных устройств существующая модель идеально – газового и дебаевского подхода, должны быть уточнены и расширены на случай плотных плазменных систем с существенным вкладом электростатического взаимодействия термодинамических параметров.
2. Наиболее естественным образом, такое расширение может быть осуществлено для статистической ячеечной модели квазинейтральных ячеек с использованием условного разбиения пространства в не макрочастицы на две области: линейного и не линейного экранирования. В таком подходе аналитическое сопряжение двух решений на границе этих областей дает возможность сформулировать и решить задачу не линейного экранирования макрочастицы в ГПС в замкнутом виде. Полученное решение характеризуется дебаевскими ассимптотиками, а расчетные данные хорошо согласуются с имеющимся экспериментальным материалом.
Список литературы
1. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. – М.: Наука, 1978. –583 с.
2. Лифшиц Е.М., Питаевский Л.П. Физическая кинетика. – М.: Наука, 1979. –528 с.
3. Saha M.N. Ionisation in the solar chramosphorell Philosophycal Magazin. –1920.-v.40 – P.472-488.
4. Тамм И.Е. Основы теории электричества. – М.: Наука, 1976. –616 с.
5. Голант В.Е., Жилинский А.П., Сахаров С.А. Основы физики плазмы. – М.: Автомиздат, 1977. –384 с.
6. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. – М.: Наука, 1974. –752 с.
7. Самуйлов Е.В. Сечение прилипания электронов к сферическим частицам и теоретическая ионизация частиц // Теплофизика высоких температур. –1966. – Т.4. - №2. – с.143-147.
8. Фиалков Б.С., Щербаков Н.Д., Акст Н.К., Беседин В.И. Использование электрофизических явлений для контроля и управления теплотехническими и технологтческими процессами // Физика горения и взрыва. – 1983. - № 5. – с. 29.
9. Цветков Ю. В., Панфилов С. А. Низкотемпературная плазма в процессах восстановления. – М.: Наука, 1980. – 350 с.
10. Boxman R.L., goldsmith S. The interaction between plasma and microparticles in a multi-cathode-spot // Vacuum arc. // G. Appol. Phys. –1981. –V.52. N1. P151 157/
11. Красников Ю. Г., Кучеренко В. И. Термодинамика не идеальной низкотемпературной многокомпонентной плазмы на основе химической модели // Теплофизика высоких темтератур. – 1978. – Т. 16. - № 1. – С. 45 – 53.
12. Dimick R.C., Soo S.L. Scattering of electrons and ions by dust particles in a gas // Phys. Fluids. 1964. –V.7.№1. P – 1638 – 1640/
13. Sodha M.N., Kaw P.K., Srivastava H.K. Conductivity of dust – loden gases // Brit. G.Appl.Phys. – 1965. – V.16. - №5.- P.721 – 723.
14. Самуйлов Е. В. О константе равновесия ионизации частиц // Теплофизика высоких температур. – 1965. – Т. 3. - № 2. – С.216 – 222.
15. Журавский А. М. Справочник по эллепт ическим функциям. – М. – Л.: Изд – во. АН СССР, 1941. – 235 с.
16. Аршинов А. А., Мусин А. К. Равновесная ионизация частиц // Доклады Академи Наук СССР. – 1958. – Т. 120. - № 4. – С.747 – 750.
17. Добрецов Л. Н., Гомоюнова М. В. Эмиссионная электроника. – М.: Наука, 1966. – 564 с.
18. Лукьянов Г А. Ионизация в разряженной низкотемпературной плазмы при наличии твердой фазы и примеси щелочного металла // Теплофизика высоких температур. – 1976. – Т. 14 - № 3. – С. 462 – 468.
19. Debye P., Huckel E. Zur Fheorie der Electrolyte. I.Gefrierpunktsniedrigung und vervandte Erscheinungen // Phys. Zschr. –1923 –B.24. –S.185 –206.
20. Gibson E. Ionisation phenomena in a – gas – particle – plasmall Phys. Fluids. – 1966.-V.9. - №12. – P.2389 – 2399.