Термодинамическое равновесие и устойчивость. Фазовые переходы

      (4.28)

Легко видеть, что выражение (4.28) представляет систему (n-1) независимых уравнений. Соответственно из условий равновесия для k компонент получаем k(n-1) независимых уравнений (k(n-1) связей).

    Состояние термодинамической системы в этом случае задается температурой , давлением p и k-1  значениями относительных концентраций компонент в каждой фазе. Таким образом состояние системы в целом задается  параметром.

      Учитывая  наложенных связей, найдем число независимых параметров системы (степенной свободы).

.      (4.29)

Равенство (4.29) называют правилом фаз Гиббса.

       Для однокомпонентной системы () в случае двух фаз () имеется одна степень свободы, т.е. мы произвольно можем изменять только один параметр. В случае же трех фаз () не имеется степеней свободы (), то есть сосуществование трех фаз в однокомпонентной системе возможно только в одной точке, называемой тройной точкой. Для воды тройная точка соответствует следующим значениям:  .

      Если система не однокомпонентна, возможны боле сложные случаи. Так, двуфазная () двукомпонентная система () обладает двумя степенями свободы. В этом случае вместо кривой фазового равновесия получим область в виде полосы, границы которой соответствуют фазовым диаграммам для каждой из чистых компонент, а внутренние области соответствуют различным значениям относительной концентрации компонент. Одна степень свободы в данном случае соответствует кривой сосуществования трех фаз, а  соответствует четвертой точке сосуществования четырех фаз.

4.

      Как было рассмотрено выше, химический потенциал можно представить в виде:

Соответственно первые производные от химического потенциала равны удельным значениям энтропии, взятой с обратным знаком, и объеме:

         (4.30)

Если в точках, удовлетворяющих фазовому равновесию:

,

первые производные химического потенциала для разных фаз испытывают разрыв:

   ,      (4.31)

говорят, что термодинамическая система испытывает фазовый переход I-го рода.

      Для фазовых переходов первого рода характерно наличие срытой теплоты фазового перехода, отличной от нуля, и скачок удельных объемов системы. Скрытая удельная теплота фазового перехода определяется из соотношения:

      (4.32)

а скачок удельного объема равен:

      (4.33)

      Примерами фазовых переходов первого рода являются процессы кипения и испарения жидкостей. Плавления твердых тел, преобразования кристаллической структуры и т.д.

      Рассмотрим две близлежащие точки на кривой фазового равновесия () и (), параметры которых различаются на бесконечно малые величины. Тогда уравнение (4.25) справедливо и для дифференциалов химических потенциалов:

отсюда следует:

      (4.34)

Выполняя преобразования в (4.34), получим:

      (4.35)

Выражение (4.35) получило название уравнения Клапейрона – Клаузиуса. Это уравнение позволяет получить вид кривой фазового равновесия по известным из эксперимента значениям теплоты фазового перехода  и объемов фаз  и  без привлечения понятия химического потенциала, которое достаточно сложно определить как теоретически, так и экспериментально.

      Большой практический интерес представляют так называемые метастабильные состояния. В этих состояниях одна фаза продолжает существовать в области устойчивости другой фазы:

Примерами достаточно устойчивых метастабильных состояний являются алмазы, аморфное стекло (наряду с кристаллическим горным хрусталем) и т.д. В природе и промышленных установках широко известны метастабильные состояния воды: перегретая жидкость и переохлажденный пар, а также переохлажденная жидкость.

      Важным обстоятельством является то, что условием экспериментального осуществления этих состояний является отсутствие в системе новой фазы, примесей, загрязнений и т.д., т.е. отсутствие центра конденсации, парообразования и кристаллизации. Во всех этих случаях новая фаза возникает первоначально в малых количествах (капли, пузыри или кристаллы). Поэтому существенными становятся поверхностные эффекты, соизмеримые с объемными.

      Для простоты ограничимся рассмотрением простейшего случая сосуществования двух пространственно неупорядоченных фазовых состояний  - жидкости и пара. Рассмотрим жидкость, в которой находится небольшой пузырек насыщенного пара. При этом вдоль поверхности раздела действует сила поверхностного натяжения. Для ее учета введем параметры:

         (4.36)

Здесь  - площадь поверхности пленки,

 - коэффициент поверхностного натяжения. Знак “-” во втором равенстве (4.36) соответствует тому, что пленка стягивается и работа внешней силы направлена на увеличение поверхности:

      (4.37)

Тогда с учетом поверхностного натяжения потенциал Гиббса изменится на величину:

Вводя модель системы под поршнем и, учитывая равенство , запишем выражение для потенциала Гиббса в виде

      (4.39)

Здесь  и  - удельные значения свободной энергии,  и  - удельные объемы каждой из фаз. При фиксированных значениях () величина (4.39) достигает минимума. При этом потенциал Гиббса можно проварьировать по . Эти величины связаны с помощью соотношения:

,

где R можно выразить через : . Выберем в качестве независимых параметров величины , тогда потенциал Гиббса (4.39) можно переписать в виде:

     (4.46)

(здесь учтено  )

Выполняя варьирование (4.40), запишем:

      (4.47)

Учитывая независимость величин , сведем (4.41) к системе

      (4.42а)

      (4.42б)

      (4.42в)

Проанализируем полученное равенство. Из (4.42а) следует:

      (4.43)

Его смысл в том, что давление  в фазе 1 равно внешнему давлению.

      Вводя выражения для химических потенциалов каждой из фаз и учитывая

запишем  (4.42б) в виде:

       (4.44)

Здесь  - давление во II фазе. Отличие уравнения (4.44) от условия равновесия фаз (4.25) в том, что давление в (4.44) в каждой из фаз может быть различным.

      Из равенства (4.42в) следует:

.

Сравнивая полученное равенство с (4.44) и выражением для химического потенциала, получим формулу для давления газа внутри сферического пузырька:

      (4.45)

Уравнение (4.45) представляет собой известную из курса общей физики формулу Лапласа. Обобщая (4.44) и (4.45) запишем условия равновесия между жидкостью и пузырьком пара в виде:

      (4.46)

      В случае исследования задачи фазового перехода жидкость – твердое тело ситуация существенно осложняется в связи с необходимостью учета геометрических особенностей кристаллов, анизотропии направления преимущественного роста кристалла.

5.

      Фазовые переходы наблюдаются и в более сложных случаях, при которых разрыв терпят только вторые производные химического потенциала по температуре и давлению. В этом случае кривая фазового равновесия определяется не одним, а тремя условиями:

      (4.47а)

                           (4.47б)

                               (4.47в)

      Фазовые переходы, удовлетворяющие уравнениям (4.47), получили название фазовых переходов II рода. Очевидно, скрытая теплота фазового перехода и изменение удельного объема в этом случае равно нулю:

         (4.48)

Для получения дифференциального уравнения кривой фазового равновесия использовать уравнение Клапейрона – Клаузиуса (4.35) нельзя, т.к. при непосредственной подстановке в выражение (4.35) значений (4.48), получается неопределенность . Учтем, что при движении вдоль кривой  фазового равновесия  сохраняется условие  и . Тогда:

                                                                                                      (4.49)

Вычислим производные в (4.49)

     (4.50а)


                                 (4.50б)

                                 (4.50в)

      Подставляя полученные выражения в (4.49), находим:

         (4.51)

Система линейных уравнений (4.51), записанная относительно  и  является однородной. Поэтому ее нетривиальное решение существует только в том случае, если определитель, составленный из коэффициентов равен нулю. Поэтому запишем

   или  

Учитывая полученное условие и выбирая из системы (4.51) любое уравнение, получаем:

           (4.52)

Уравнения (4.52) для кривой фазового равновесия в случае фазового перехода II рода получили название уравнений Эренфеста. В этом случае кривая фазового равновесия может быть определено по известным характеристикам скачков теплоемкости , коэффициента теплового расширения , коэффициента упругости .

      Фазовые переходы второго рода встречаются значительно ранее фазовых переходов I рода. Это очевидно даже из условия (4.47), которое значительно жестче уравнения кривой фазового равновесия (4.юю) с условиями (4.31). Примерами таких фазовых переходов может служить переход проводника из сверхпроводящего состояния в нормальное при отсутствии магнитного поля.

      Кроме того, встречаются фазовые переходы с равной нулю скрытой теплотой , для которых при переходе наблюдается наличие сингулярности в калорическом уравнении (теплоемкость терпит разрыв второго рода). Такой тип фазовых переходов носит название фазового перехода типа. Примерами таких переходов являются переход жидкого гелия из сверхтекучего состояния в  нормальное, переход в точке Кюри для ферромагнетиков, переходы из неупругого состояния в упругое для сплавов  и т.д.



Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать