Термодинамика растворов неметаллов в металлических расплавах

Результаты расчетно-теоретического исследования термодинамики растворов трития в жидком литии и расплавах, содержащих литий, могут быть использованы для совершенствования методов контроля содержания трития в бланкете и оптимизации процессов извлечения трития из жидкометаллического бланкета в разрабатываемых прототипах энергетического термоядерного реактора.

Практически важным, с точки зрения выбора конструкционных материалов жидкометаллических систем энергетических установок, является метод прогнозирования направления преимущественного переноса массы в гетерогенной системе с помощью параметров взаимодействия между компонентами в многокомпонентном расплаве.

Метод расчета равновесной концентрации неметаллического компонента керамического материала в бинарном металлическом расплаве, основанный на использовании уравнений обобщенной координационно-кластерной модели, позволяет в значительной степени сократить объем экспериментальных исследований по оценке совместимости рассматриваемого материала с металлическим расплавом.

Основные положения, выносимые на защиту.

1. Обобщенная координационно-кластерная модель для описания взаимодействий и расчета термодинамических характеристик раствора неметалла в расплаве из трех металлических компонентов.

2. Результаты расчетно-теоретической оценки влияния добавок четвертого компонента на термодинамические характеристики трития в расплавах системы литий – свинец.

3. Метод прогнозирования направления изотермического переноса массы в статических условиях в расплавах, содержащих неметаллические примеси.

4. Метод расчета равновесной концентрации неметаллического компонента керамического материала в бинарном металлическом расплаве, позволяющий определять области температур и составов жидкой фазы, где рассматриваемый материал и расплав совместимы друг с другом.

5. Метод расчета поверхностного натяжения и состава поверхности бинарных металлических расплавов с помощью уравнений квазихимической модели, позволяющий учесть существование ближнего упорядочения в объеме и на поверхности расплавов.

Апробация работы. Основные результаты диссертации докладывались на III Всесоюзной конференции по исследованию и разработке конструкционных материалов для реакторов термоядерного синтеза (Ленинград, 1984 г.), 2-ой международной конференции "Радиационное воздействие на материалы термоядерных реакторов" (СПб, 1992 г.), международной конференции Liquid Metalal Systems – Material Behavior and Physical Chemistry in Liquid Metalal Systems II, March 16-18, 1993, Karlsruhe, Germany, 5-ой международной конференции Tritium Technology in Fission, Fusion and Isotopic Applications, 28 May–3 June 1995, Lake Maggiore, Italy, 8-ой международной конференции Eight International Conference on Fussion Reactor Materials, October 26–31,1997, Sendai, Japan, 6-ой международной конференции 6th International Conference on Tritium Science and Technology, November 11-16, 2001, Tsukuba, Japan и научно-практической интернет-конференции "Техника, технология и перспективные материалы" (Москва, 2002 г.).

Публикации. По основным результатам диссертации опубликовано 27 работ.

Объем и структура работы. Диссертация состоит из введения, шести глав, заключения, списка литературы из 214 наименований, содержит 67 рисунков и 52 таблицы. Общий объем диссертации составляет 290 страниц машинописного текста.

Обобщенная координационно-кластерная модель для

 описания четырехкомпонентных систем


Известно, что в жидких и твердых телах при температурах, близких к температуре плавления, межатомные расстояния и координационные числа отличаются несущественно. Это позволяет и в случае металлических расплавов при обсуждении типов упаковки атомов в жидкости говорить о существовании октаэдрических и тетраэдрических пустот в разупорядоченных (т. е. не обладающих дальним порядком) структурах. Если для твердых растворов металлоидов эти пустоты принято называть позициями внедрения, то при описании структуры жидкостей[1] и аморфных тел чаще применяется термин “квазимеждоузлия”.

Приступая к рассмотрению разбавленных растворов неметаллов в расплавах, содержащих три металлических компонента, необходимо отметить, что все энергетические эффекты, сопровождающие процесс растворения атома металлоида в расплаве, можно отнести к трем типам:

1. Связанные с взаимодействием растворенного атома (неметалла) с соседними атомами растворителя.

2. Обусловленные взаимодействием между соседними атомами растворителя, находящимися в первой координационной сфере вокруг атома металлоида.

3. Связанные с неэквивалентностью энергетических состояний

атомов растворителя, находящихся в первой координационной сфере вокруг атома неметалла, и атомов этого же элемента, находящихся в “объеме” расплава (т. е. вне первой координационной сферы вокруг атома металлоида).

В дальнейшем предполагается, что атомы неметалла А4 в жидком разбавленном растворе трех металлов А1, А2 и А3 занимают “квазимеждоузлия” с координационным числом z. Каждый атом А4 в растворе в качестве ближайших соседей имеет j атомов А1, k атомов А2 и l атомов А3 . В растворе существует (z+1)(z+2)/2 видов таких конфигураций, которые называются кластерами и обозначаются . При этом надо учитывать, что в расплаве атомы находятся в непрерывном движении, так что имеет смысл говорить об усредненной в течение некоторого времени[2] t конфигурации атомов.

В расплаве можно выделить две области. Первая область, которую обозначим “B”, содержит все металлические атомы, не имеющие в качестве ближайших соседей атомов А4. При рассмотрении разбавленных растворов металлоидов, в область “B” попадает большая часть атомов расплава. Вторая область, которую обозначим “C”, состоит из атомов А1, А2 и А3, которые в качестве ближайших соседей имеют атомы А4. Очевидно, атомы металлоида также входят в область “C”.

Если рассматривать расплавы системы А1 - А2 - А3 - А4 с различным содержанием компонентов, то в расплаве произвольного состава при данной температуре будет устанавливаться строго определенное равновесное распределение атомов А4 по кластерам, которое может быть охарактеризовано набором некоторых величин cj,k , где каждая из cj,k есть ни что иное, как доля атомов компонента А4, находящихся в конфигурации .

При изменении температуры (или состава) в расплаве устанавливается новое равновесное распределение cj,k. В этом случае процесс перехода расплава в новое положение равновесия можно представить в виде набора уравнений реакций следующего вида (количество уравнений кратно числу различных типов кластеров в системе):

 + А2(“B”) =  + А1(“B”)

 + А3(“B”) =  + А3(“B”)     (1)

Для коэффициента термодинамической активности металлоида в разбавленном в растворе из трех металлических компонентов получено следующее уравнение

,       (2)

где   коэффициент термодинамической активности A4 в четырехкомпонентном расплаве; γ1(1-2-3), γ2(1-2-3), γ3(1-2-3) коэффициенты термодинамической активности компонентов тройной системы А1А2А3 ; γ4(1), γ4(2), γ4(3) – коэффициенты термодинамической активности А4 в двойных расплавах А1А4, А2А4 и А3А4 соответственно;   сочетания из z элементов по j ; x1, x2, x3 – мольные доли металлических компонентов в четырехкомпонентном расплаве; h12 , h23 и h13 – энергетические параметры (константы для тройных систем А1–А2–А4, А2–А3–А4 и А1–А3–А4 при каждой температуре), учитывающие нелинейный характер зависимости смещения электронной плотности между компонентами кластера от его состава; t – параметр, принимающий значения в пределах от 0,25 до 0,5 и учитывающий ослабление связей типа металл-металл для атомов, находящихся в первой координационной сфере вокруг атома А4.

Для концентраций кластеров различного типа получены следующие уравнения в котором количество слагаемых совпадает с количеством типов кластеров, различного состава и равно (z+1)(z+2)/2.

,               (3)

где j = 0,1,…z; k = 0,1,…z; j+kz .

Очевидно, должно выполняться соотношение

 ,                            (4)

Необходимо сделать некоторые замечания, относящиеся к определенной группе четырехкомпонентных расплавов. Если в системе А1–А2–А3–А4 концентрации компонентов A1 и A2 могут изменяться в широких пределах, а концентрации A3 и A4 не превышают 1-2 % ат., то влияние третьего металлического компонента на термодинамическую активность металлоида A4 в расплаве удобно оценивать с помощью удельного параметра взаимодействия σ34, который определяется следующим образом

 ,

или с учетом (2),

,    (5)

где  - коэффициент активности А3 в тройном расплаве А1-A2-A3 при x3®0.

Для физической интерпретации модели в случае четырехкомпонентной системы А1-А2-А3-А4 проанализировано влияние характера взаимодействия[3] между металлическими компонентами на кластерный состав расплава и термодинамические характеристики растворенного металлоида А4. Расчеты, проведенные для ряда модельных четырехкомпонентных систем, отличающихся по характеру взаимодействия между компонентами, показали, что в расплаве из четырех компонентов между атомами различных элементов наблюдается своеобразная “конкуренция”. В частности, при сильном взаимодействии между атомами А1 и А2 (отрицательные отклонения от идеального раствора) атомы элементов А1 и А2 менее "активно" участвуют в образовании кластеров с центральным атомом А4, что приводит к увеличению концентрации кластеров, в которых атом А4 связан с атомами А3 (рис. 1, 2), и наоборот.

Результаты расчета термодинамических характеристик для расплавов Fe-Ni-Co-N и Ag-Cu-Sn-O во всем диапазоне концентраций металлических компонентов по уравнениям обобщенной координационно-кластерной модели (ОККМ) согласуются с экспериментальными данными (рис. 3, 4), полученными в работах У.Блока ( Block U., Stuve H.P. Z. Metallkunde. - 1969. - Bd. 74. - S.709) и Р.Пелка ( Blossey R.G., Pehlke R.D. Transactions of the metallurgical society of AIME. - 1966. - V. 236. - № 4. - P. 566).

Рис. 1. Зависимость доли атомов А4, находящихся в конфигурации A4[(A1)j(A2)k(A3)l], от содержания А2 в расплавах, насыщенных компонентом А4, при х3=0,01 (h12=h23=h13=0) :

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать