Тунельные и барьерные эффекты

  (1)

где р —импульс частицы, а μ – её масса. Решая  (1) относительно импульса, получим          

     (2)

Знаки ± следует выбрать в зависимости от направления движе­ния частицы. Если энергия частицы Е больше «высоты» барьера Um, то частица беспрепятственно пройдет барьер слева направо, если начальный импульс р>0, или в противоположном направлении, если начальный импульс р < 0.

Допустим, что частица движется слева, имея полную энергию Е, меньшую U т. Тогда в некоторой точке xt потенциальная энергия U (х1)=Е, p(x1)=0, частица остановится. Вся ее энер­гия обратится в потенциальную, и движение начнется в обратном порядке: х1 есть точка поворота. Поэтому при E<.Um частица, движущаяся слева, не пройдет через область максимума потенциала (х = х0) и не проникнет во вторую область х > х0 Подобным же образом, если частица движется справа налево, имея  Е < Um  , то она не проникнет в область за второй точкой поворота х2,

Рис. 1.1. Потенциальный барьер в одном измерении.

Рис. 1.2. Самый простой потенциальный барьер



в которой U(x2)=E (рис.1). Таким образом, потенциальный барьер является «непрозрачной» перегородкой для всех частиц, энергия которых меньше Um (напротив, он «прозрачен» для частиц, обладающих энергией Е >Um). Этим и разъясняется название «потенциальный барьер».     

Совсем иначе протекают явления   вблизи    потенциальных барьеров, если речь идет о движениях   микроскопических   частиц в микроскопических полях, т. е. о движениях, при рассмотрении которых нельзя игнорировать квантовые эффекты. В этом случае, как мы сейчас увидим, в противоположность выводам классической механики,  частицы с энергией Е, большей высоты барьера Um, частично отражаются   от   барьера,  а   частицы с энергией, меньшей  Umчастично проникают  через барьер.

Для того чтобы в этом   убедиться, мы рассмотрим совсем простой случай барьера, изображенный на рис. 2. Именно, мы будем считать, что потенциальная энергия частицы  U (х) всюду равна нулю, кроме области 0 ≤ Х ≤ l, где она имеет постоян­ное значение, равное Um. Такой барьер представляет собой, конечно, идеализацию, но на нем, особенно просто можно проследить интересующие нас стороны проблемы. Мы можем себе представить, что такой прямоугольный барьер возникает путем непрерывной  деформации  плавного барьера,  изображенного на рис. 1.

Будем искать стационарные состояния частицы, движущейся в поле такого барьера. Обозначая потенциальную энергию через U (х), мы получим уравнение Щредингера в виде

(3)


Обозначая  в дальнейшем дифференцирование по х штрихом и вводя оптические обозначения

(4)

где   п (х) — показатель преломления, мы  перепишем уравнение (3) в виде

 (5)

Уравнение (94.5) распадается на три уравнения для трех областей пространства:



(5'), (5"),  (5'")


Решения в этих областях могут быть записаны сразу:

(96.6)



(6),  (6'),  (6")


где А, В, α, β, a и b — произвольные постоянные. Однако это — общие решения трех независимых уравнений (5), (5'), (5") и они, вообще говоря, не образуют какой-либо одной волновой функции, описывающей состояние частицы, движущейся в сило­вом поле U (х). Для того чтобы они давали действительно одну функцию ψ (х), мы должны соблюсти краевые условия, которые мы сейчас установим.

Для этого будем рассматривать U (х) и, следовательно, п (х) как плавную функцию х. Интегрируя тогда уравнение (5) около точки х = 0, получим


Отсюда

                                                 (7                    (7)

 

Переходя к пределуполучаем краевое условие

 (7')


Далее, согласно общему требованию о непрерывности волновых функций, имеем второе краевое условие

 (7")

Точка х = 0 ничем не выделена, поэтому условия (7') и (7") должны быть соблюдены в любой точке, в частности, и при х = 1.

Чтобы решение (6) трех уравнений (5) можно было рассматривать как предел решения одного уравнения при переходе от плавного изменения U (х) к скачкообразному, нужно, чтобы эти решения в точках х = 0 и х = 1 удовлетворяли краевым условиям (7') и (7"), т. е.

(8)

Подставляя сюда значение функций из (6), получаем

 (9)

Мы имеем четыре уравнения для шести постоянных. Произвол в выборе постоянных объясняется тем, что могут быть волны, падающие на барьер слева, а могут быть — падающие на него справа.

Если мы, например, возьмем А, В≠0, b = 0, то Aeik0X может рассматриваться как падающая волна, Be-ik0X —как отраженная, аe-ik0X как проходящая. Если бы мы взяли b ≠ 0, то это означало бы, что есть еще падающая волна с другой стороны барьера. Эти возможности соответствуют в классической механике случаям движения частиц к барьеру слева, либо справа.

Мы рассмотрим для определенности случай падения частиц слева. Тогда, мы должны взять b = 0. Кроме того, без всяких ограничений мы можем принять амплитуду падающей волны за единицу: А=1. Уравнения (9) принимают тогда вид                                           ' '

 (10)


Из этих алгебраических уравнений находим α, β, В и a:)

 (11 ), (12), (13), (14)

Если энергия частицы Е больше высоты барьера Um, то показа­тель преломления пт действителен. В этом случае интенсивность отраженной волны | В| 2 равна



а интенсивность проходящей волны

 (15)

Вычислим по формуле для плотности тока поток частиц в падающей волне, (JQ), отраженной (Jr) и проходящей (Jd ). Получаем:

 (16)

Отношение потока отраженных частиц к потоку падающих

 

              (17)

 

называют коэффициентом отражения. Отношение потока проходящих частиц к потоку падающих

              (18)

 

называют коэффициентом прозрачности барьера.

Из закона сохранения числа частиц (уравнение непрерывности для тока) следует, что


                                (19)

 

 (приведенные выше выражения для R и D позволяют непосредст­венно убедиться в справедливости этого равенства).

По классической механике, если E>Um, должно иметь место R=0, D=1 барьер совершенно прозрачен. Из (15) следует, что  | В| 2 ≠0 поэтому в квантовой механике R > О, D < 1. Частицы частью отражаются так же, как отражаются световые волны
на границе двух сред.

Если энергия частицы Е меньше высоты барьера Um , то по классической механике имеет место полное отражение D = 0, R=1. При этом частицы совсем не проникают внутрь барьера. В оптике такой случай отвечает полному внутреннему отражению. Согласно геометрической оптике лучи света не проникают во вторую среду.

Более тонкое рассмотрение на основе волновой оптики пока­зывает, что в действительности световое поле при полном отра­жении все же проникает в среду, от которой происходит отражение и если эта среда представляет собой очень тонкую пластинку, то свет частично проходит через нее. Квантовая механика в слу­чае Е < Um (случай отражения) приводит к выводу, аналогичному выводу волновой оптики. Действительно, если E < Um, то показатель преломления пт является, чисто пт мнимой величиной (см. 4). Поэтому мы положим

 (20)

Внося это выражение для пт в (14), вычислим теперь |а|2. Тогда, считаяполучаем

 (21)

Обозначая первый дробный множитель через Do (он не очень отличается от 1) и имея в виду значение k6, получаем

 (22)

Таким образом, при E<.Um, в противоположность выводам классической механики, частицы проходят через барьер.

Явление прохождения через потенциальный барьер получило образное название туннельного эффекта.

Очевидно, что туннельный эффект будет иметь заметное зна­чение лишь в тех случаях, когда D не слишком мал, т. е. когда

 (23)

Нетрудно видеть, что с туннельным эффектом мы можем встре­титься лишь в области микроскопических явлений. Так, например, для UmE ~ 10-11 эрг (около десяти электрон-вольт), μ ~ 10-11  (масса электрона) и l ~ 10-11 cм, из (22) получим D ~ e-1. Но если мы возьмем, например, l=1 см, то из той же формулы получим,. Увеличение массы частицы и превышение Um над Е еще более уменьшат D. Подобным же образом можно пока­зать, что рассмотренное выше отражение исчезает с ростом энер­гии частицы — квантовая механика переходит в классическую.

Формулу (22) для коэффициента прозрачности D, выведен­ную нами для прямоугольного барьера, мы можем обобщить и на случай барьера произвольной формы. Произведем сейчас это обобщение простым путем.

Пусть имеем потенциальный барьер U(x), изображенный на  рис. 1,  Представим его приближенно в виде совокупности прямоугольных барьеров с шириной dx и высотой U (х). Эти барьеры на рисунке заштрихованы. Частица, имеющая энергию Е, вступает в барьер в точке х = х1 и покидает его в точке х = х2. Согласно (22) коэффициент прозрачности для одного из этих элементарных барьеров равен

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать