Ученик доложил об этом учителю. Резерфорд впоследствии так говорил о своем впечатлении от сообщения Марсдена: «Это был совершенно невероятный случай в моей жизни. Это было почти неправдоподобно, как если бы выстрелили 15-фунтовым снарядом в кусок папиросной бумаги и он вернулся бы обратно и поразил вас».
Из опытов, таким образом, следовало, что в каждом атоме пластинки должна быть массивная часть, имеющая положительный заряд, который и отталкивает альфа-частицу. А электроны атома должны находиться вне этой массивной части атома.
Из всего этого нельзя было не сделать вывод о том, что модель атома Томсона неверна!
Но как же все-таки построен атом?
И Резерфорд начинает воскрешать свои юношеские мечтания - должна существовать какая-то закономерность в строении атомов различных элементов. В природе происходит не только эволюция растений и животных, но и эволюция атомов.
Эти раздумья и поиски атомной структуры через несколько месяцев привели ученого к созданию ядерной теории атома.
Профессор Кембриджского университета известный физик Артур Эддингтон дал такую оценку открытию: «Создав эту модель, Резерфорд произвел величайшую перемену в нашем взгляде на материю со времен Демокрита».
Идея о неразрушаемом и неизменном атоме навсегда исчезла из физики. Было положено начало современной физике атома.
В 1913 г. Резерфорд начинает работу над проблемой, которая непосредственно вытекала из его предыдущих исследований. Он руководствуется следующей мыслью: нельзя ли разогнать альфа- частицы, чтобы они столкнулись с ядром атома и разбили его, как снаряд разбивает кирпичную стену? В результате изменится ядро атома, получится новый элемент, произойдет искусственное превращение элементов. Прославленный физик проводит свои удивительные опыты по изучению столкновений альфа- частиц с ядрами атомов. Но начинается первая мировая война. Ученики Резерфорда идут в армию, на фронте погибает один из них - Генри Мозли. Объем научных работ сокращается, а ученого призывают в военную промышленность, где он занимается вопросами строительства подводных лодок.
В 1919 г. Резерфорда приглашают на работу в качестве директора той самой Кавендишской лаборатории, в которой он начинал свою научную деятельность. Он переезжает в Кембридж, где и живет до самой смерти.
В этой лаборатории ученый возвращается к реализации своей идеи, и вскоре весь научный мир поразила сенсация: альфа- частица попала в ядро азота, и от этого в конечном итоге получился кислород. Впервые на земле было произведено искусственное превращение одного элемента в другой. Опыты Резерфорда стали повторять во многих лабораториях мира. Зародилась новая ветвь физики и техники - искусственное получение радиоактивных элементов. В наше время мы пожинаем плоды открытия Резерфорда в виде многочисленных искусственных радиоизотопов.
В последующие годы замечательный ученый открыл 17 ядерных реакций. В 1920 г. он предсказал существование нейтрона, и с этого времени начала создаваться современная теория атомного ядра. Слава Резерфорда гремит по всему миру. В 1922 г. его избирают почетным членом Академии наук СССР. В 1925 - 1930 гг. он исполняет обязанности президента Лондонского королевского общества. В 1932 г. его возводят в сан лорда и называют лордом Нельсоном. Но звание лорда так и не пристало к Резерфорду - сыну фермера - и осталось только выражением почета, оказанного ему.
Всю свою жизнь Резерфорд был здоровым, жизнерадостным человеком. Он умел работать, но ему принадлежит такой афоризм: «Плохи те люди, которые слишком много работают и слишком мало думают». Резерфорд говорил, что плодотворные мысли к нему приходят на охоте, на рыбной ловле, во время игр.
Никто не предполагал, что этот человек может так скоро умереть. Однако осенью 1937 г. у него случилось ущемление грыжи, и на четвертый день после операции он скончался.
Могила Резерфорда находится в Вестминстерском аббатстве, где похоронены выдающиеся люди Англии. Она расположена рядом с останками Ньютона, Фарадея и Дарвина.
Нильс Хенрик Давид Бор (1885-1962)
Один из величайших физиков нашего времени, имя которого стало почти легендарным. Он был человеком, чьи идеи наряду с идеями Эйнштейна являлись руководящими для физиков в течение доброй половины столетия.
Нильс Бор родился в 1885 году в Копенгагене, в семье профессора физиологии. Детство и юность его прошли в родном городе. Будучи 20-летним юношей, он направил в Датское королевское научное общество свою первую работу, которая получила золотую медаль. Содержанием работы явилось исследование колебаний поверхности струи жидкости и определение поверхностного натяжения воды. Однако идеи этой первой работы не выходят за рамки классической физики.
В 1911 году Бор окончил университет, защитил диссертацию и уехал в Кавендишскую лабораторию, где собирался под руководством Джозефа Томсона работать над электронной теорией. Однако это сотрудничество длилось недолго. Передовые идеи Бора не находили отклика у приверженца классики Томсона. Они очень часто спорили. Бор мыслил глубже, его неудержимо влекли к себе идеи новой физики. Споры между Томсоном и молодым, строптивым датчанином, очевидно, серьезно повлияли на их отношения, и, хотя Бор всегда считал английского ученого гениальным человеком, он уехал из Кембриджа в Манчестер к беспокойному, ищущему Резерфорду. Последний с группой сотрудников занимался тогда исследованием атомного ядра. Бор проникся большой симпатией к Резерфорду, он восхищался им как ученым и человеком. Начались совместные беседы, споры, искания. И вот в 1913 году Бор нашел остроумное решение вопроса на основе открытия, сделанного Планком.
Датский ученый утверждал, что электрон в устойчивом атоме может двигаться вокруг ядра по определенной "дозволенной" орбите. В этом состоянии он пребывает спокойно и не излучает энергии. Если же электрон перескакивает с одной определенной орбиты на другую, лежащую ближе к ядру, то он излучает энергию, причем это излучение идет не непрерывно, а порциями - квантами. Если же электрон поглощает квант энергии, то он переходит на более далекую от ядра орбиту.
Эти идеи и составляют существо так называемых "постулатов Бора". Все очень просто с точки зрения сегодняшнего состояния физики. А между тем нужно было быть очень смелым человеком, чтобы высказывать эту идею у колыбели атомной физики! Так возникла боровская модель атома и новая электромагнитная теория материи. Эти работы имели, как показало дальнейшее развитие науки, много уязвимых мест, свои противоречия, которые позднее устранялись самим Бором. Но исследования, проделанные им в 1913 году, решали ряд труднейших проблем. Ученым это казалось поразительным. Дело в том, что постулаты Бора не вытекали из прежних представлений о строении атома. Они противоречили всем принципам физики XIX века.
После завершения первых работ Бор в течение года жил в Копенгагене и читал лекции в университете. В 1914 году он снова уехал на 2 года в Манчестер, где продолжал работу над теорией атома. В 1916 году Бор окончательно поселился в Копенгагене и стал профессором теоретической физики в университете. В Копенгагене по его инициативе создается Институт теоретической физики, руководителем которого он был до последних дней своей жизни.
Идеи Бора быстро разнеслись по всему миру, а его выступления за пределами Дании собирали слушателей из разных стран.
В 1922 году за работы по квантовой теории строения атома и его излучения Бор получил Нобелевскую премию. Ему было тогда 37 лет. Развитие квантовой физики с 1913 по 1925 год шло в основном по пути развития теории Бора, которая дала возможность объяснить много удивительных явлений: закономерности в линейчатых спектрах, расщепление спектральных линий, размеры атома, комбинационный принцип в спектроскопии.
С 1924 года начала создаваться квантовая механика, иначе говоря, механика движения микрочастиц: электронов, позитронов, протонов и других так называемых "элементарных частиц". Трудами Шредингера, Гейзенберга, Де Бройля, Дирака стал создаваться математический аппарат этой новой механики, учитывающей волновые, атомистические и корпускулярные свойства микрочастиц. Естественно, что возникновению квантовой механики предшествовало огромное накопление экспериментальных фактов. Все это нужно было осмыслить, синтезировать. В 1926 году Бор пригласил Шредингера приехать в Копенгаген и прочесть несколько лекций по волновой механике. С его приездом между ними начались споры по основам квантовой теории, в которых Шредингер защищал идеи волновой механики, а Бор утверждал, что в ней ничего нельзя понять без квантовых скачков, Однажды Шредингер, доведенный до отчаяния аргументами Бора, воскликнул: «Если мы собираемся сохранить эти проклятые квантовые скачки, то, я жалею, что вообще имел дело с квантовой теорией».
Бор возразил: «зато остальные благодарны Вам за это, ведь Вы так много сделали для выяснения смысла квантовой теории».
Итак, уравнения новой механики были написаны, но многое осталось неясным. Нужно было понять, например, что значат координаты электрона. Ведь последний обнаружил не только корпускулярные, но и волновые свойства, а если это так, то у него нет определенных координат. Иначе говоря, нужно было установить связь между символами, входящими в уравнения, и реальным физическим миром. Наконец в 1927 году Бор сумел синтезировать идеи волновой теории. В результате усилиями Бора и Гейзенберга был сформулирован принцип дополнительности, которым ученый подчеркивал, что все особенности микромира и поведение микрочастиц нельзя понимать в отрыве от микромира, от прибора, который измеряет координату или какую-либо другую характеристику частицы. Таким образом, здесь имеет место взаимодействие объекта изучения - микрочастицы с макро объектом - прибором. Теория идеи и труды двух великих ученых сыграли решающую роль не только в физике, но и в формировании взглядов.
Эти работы Бора стали предметом жарких дискуссий между учеными по поводу коренных философских вопросов современного естествознания.
В 1927 году состоялся V Сольвеевский конгресс, на котором идеи Бора подверглись серьезной критике со стороны Эйнштейна. И Бор, и Эйнштейн очень остроумно и глубоко защищали свою точку зрения. Их полемика вылилась в многолетнюю дискуссию, в ходе которой создатель теории относительности выдвигал все новые и новые возражения. Бор очень любил Эйнштейна и подчеркивал, что его критика способствовала развитию глубокого и всестороннего понимания квантовой механики; парадоксы, выдвигаемые Эйнштейном, помогали развивать теорию. Идеи и труды двух великих ученых сыграли решающую роль не только в физике, но и в формировании современного научного мировоззрения, так как теория квантов и теория относительности отражают общие закономерности научного познания.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14