|
Рис 2.1. Схема экспериментальной установки.
Вольфрамовая проволочка (1) нагревалась электрическим током, который подавался от источника стабилизированного питания Б5 – 47 (2). Падение напряжения на концах проволочки измерялось цифровым вольтметром В7 – 21А (3) или фиксировалось при помощи самописца КСП – 4. Таким образом, при постоянном значении силы тока, измеряемого амперметром (4), были получены зависимости падения напряжения U на концах вольфрамового проводника от времени t. Полученные зависимости U(t) использовались для определения сопротивления проводника R в различные моменты окисления.
Воспользовавшись зависимостью сопротивления проводника от температуры:
, , (2.1)
определим температуру исследуемого образца:
. (2.2)
В формулах (2.1) и (2.2) удельное сопротивление проводника при Т0=273К, Ом м; удельное сопротивление проводника при температуре Т, Омм; T температура проводника, К; температурный коэффициент сопротивления, К-1; L – длина проводника, м; d – диаметр проводника, м. При этом считалось, что распределение температуры по сечению и длине проволочки незначительно.
Таким образом, анализ временной зависимости температуры проводника, нагреваемого постоянным электрическим током, позволяет исследовать механизм последовательных стадий тепломассообмена и высокотемпературного окисления вольфрамового проводника в воздухе.
На рис.2.2.б изображена экспериментальная термограмма, отражающая изменение температуры вольфрамового проводника со временем в сопоставлении с фотографиями проводника, сделанными в определенные моменты времени при помощи цифровой камеры (рис.2.2.а). Точки 1,2…..6 на термограмме соответствуют по времени кадрам 1,2…..6.
После момента подачи электрического тока температура проводника резко возрастает и достигает квазистационарного значения в т.А, определяемого равенством джоулева тепловыделения и теплопотерь от проводника в окружающий газ и к токоподводящим проводам. Выражение для расчета этой температуры получим позже.
В дальнейшем наступает вторая длительная стадия высокотемпературного тепломассообмена и окисления вольфрамового проводника до температур плавления его окислов т.В. Как видно из таблицы 1.1 область температур плавления окислов вольфрама лежит в пределах 1500 (WO2) 1746 (WO3). На второй стадии температура проволочки медленно возрастает, на поверхности проводника интенсифицируется химическая реакция окисления вольфрама. По обратной взаимной связи с увеличением температуры скорость окисления увеличивается, что ведет к увеличению температуры проводника (точки и кадры 1,2,3,4,5). С увеличением температуры проволочки начинается процесс сублимации оксидной пленки с поверхности. Как указывают литературные данные, сублимация окислов начинается еще до их плавления, примерно при температурах 1200 – 1400 К.
Процесс сублимации приводит к некоторому уменьшению толщины окисла и, как следствие, возрастанию скорости окисления. Стадия II ограничивается температурой плавления окисла WO2 (т.В). На последующей III стадии (кривая выше т.В) происходят процессы плавления и интенсивного испарения оксидной пленки с поверхности проводника. Толщина оксидной пленки уменьшается и меньше препятствует доступу кислорода к поверхности металла, что ведет к возрастанию скорости окисления и резкому увеличению температуры вольфрамового проводника. При столь высоких температурах проводника происходит процесс рекристаллизации – укрупнения зернистой структуры материала и постепенного исчезновения его волокнистой структуры. Зерна увеличиваются в размерах до площади поперечного сечения проволочки, в результате чего начинают скользить «провисать» под действием собственной массы относительно друг друга. При температурах, близких к температуре плавления вольфрама (Тпл=3650 К [9,6]), проводник перегорает в небольшой локальной области, преимущественно по центру, где его температура максимальна (кадр 6, точка 6). Разрушение проводника связано с плавлением и испарением окисла, рекристаллизацией и, возможно, с плавлением самого металла.
Таким образом, нестационарный тепломассообмен и кинетику окисления вольфрамового проводника, нагреваемого электрическим током можно представить в виде 3–х последовательных стадий: I – нагревание проводника до квазистационарной температуры; II – высокотемпературное окисление вольфрама до температуры плавления оксидной пленки; III – плавление и интенсивное испарение оксидной пленки, увеличение скорости окисления, перегорание проводника.
Рис.2.2. Фотографии поверхности вольфрамовой проволочки и график изменения ее температуры с течением времени при силе тока I=1.1 A, d=70 мкм, L=5.3 см, Tg=291 К. (Расстояние до проводника 10 см)
На рис.2.3 представлены фотографии вольфрамовой проволочки, сделанные на различных стадиях высокотемпературного окисления (кадры 1 – 7) и в момент ее перегорания (кадр 8). Видно, что в момент времени, предшествующий перегоранию проводник визуально несколько утолщается. Вероятно, это связано с переходом окисла в жидкое состояние и образованием у поверхности проводника тонкого слоя испарившегося газообразного окисла – зоны конденсации. В момент перегорания образуется большое количество мелких частичек, летящих в разных направлениях. Самые крупные из них видны на последнем кадре рис.2.3.
2.2. Физико–математическое моделирование процессов высокотемпературного окисления вольфрамовой проволочки с учетом испарения оксидной пленки.
Рассмотрим нестационарный тепломассообмен (ТМО) и кинетику окисления вольфрамового проводника, нагреваемого электрическим током, в воздухе при комнатной температуре. Выделяемое при этом джоулево тепло приводит к увеличению температуры проводника и к активизации на его поверхности химической реакции окисления металла
Как было отмечено в главе 1, при окислении вольфрама в воздухе возможно образование двух устойчивых окислов WO2 и WO3 согласно уравнениям:
W+O2®WO2 (I)
2W+3O2®2WO3 (II).
Предположим, что на поверхности проволочки образуется окисная пленка, состоящая только из WO2 . Так как реакция окисления протекает по параболическому закону, то скорость химической реакции по кислороду лимитируется толщиной оксидной пленки
, , (2.3)
где k – константа скорости химической реакции, ; h – толщина оксидной пленки, м; относительная массовая концентрация кислорода на поверхности металла; rg – плотность воздуха, ; скорость окисления по кислороду, ; k0 – предэкспоненциальный множитель, ; Е – энергия активации, .
Концентрацию кислорода на поверхности проволоки найдем из условия равенства массового потока кислорода к поверхности и скорости его потребления на границе металл – окисел [2]:
,
,
, (2.4)
где Sh ,d h ,S, d – соответственно площадь поверхности и диаметр проводника, покрытого слоем окисла толщиной h, и чистого металлического проводника без оксидного покрытия. Для тонких оксидных пленок, наблюдаемых при окислении вольфрама, можно считать, что dh /d»1 (dh =d+2h).
Это дает нам возможность определить плотность химического тепловыделения реакции окисления вольфрама в виде:
. (2.5)
В уравнениях (2.4), (2.5) : относительная массовая концентрация кислорода в воздухе, =0.23 при Ратм=105Па; Q – тепловой эффект реакции, ; коэффициент массообмена, , который определяется условиями массообмена проволочки с воздухом и характерным ее размером:
, (2.6)
где Sh – критерий Шервуда; D – коэффициент диффузии кислорода в воздухе, ; d – диаметр проволоки, м.
Молекулярно–конвективный теплообмен нагретой проволочки с воздухом описывается законом Ньютона–Рихмана:
, , (2.7) где qc–плотность теплового потока молекулярно–конвективным путем, ; Tg – температура газа, К; коэффициент теплообмена, ; коэффициент теплопроводности газа, ; Nu – критерий Нуссельта.
Для тонких проволочек можно принять, что Nu = Sh=0.5 [12]
Для проволочек в поперечном потоке воздуха в интервале чисел Рейнольдса:
1<Re<4 для Nu можно пользоваться зависимостью.
, ,
V – скорость потока, ; коэффициент кинематической вязкости воздуха, .
В области 4<Re<40 используется зависимость:
Для областей 40<Re<103 рекомендуется зависимость
Nuf=0.52Re0.5f Pr0.37f(Prf /Prw)0.25,
Pr – критерий Прандтля, индекс ²w² – свойства рассчитаны у стенки, т.е. при температуре проволочки, ²f ² при температуре набегающего газа.
Нагреваемая проволочка теряет часть энергии в результате лучистого теплообмена со стенками реакционной установки, который описывается законами Кирхгофа и Стефана–Больцмана:
, (2.8)
где qr – плотность теплового потока излучением, ; степень черноты оксидной пленки; постоянная Стефана – Больцмана, ; Tw температура стенок реакционной установки, К. В нашем случае Tw = Tg = Tk, где Tk – комнатная температура воздуха, К.
В местах контакта вольфрамовой проволочки с токоподводящими проводами возникает тепловой поток теплопроводностью, направленный к соединительным проводам и приводящий к понижению температуры проволочки. Как было сказано в главе 2, теплопотери проволочки через ее концы определяется выражением :
, (2.9)
qL – плотность теплового потока теплопроводностью, .
Считаем, что температура подводящих проводов равна температуре окружающего воздуха Tg.
Мощность электрического тока, нагревающего проводник, с учетом зависимостей от геометрических размеров и температуры, представим в виде:
. (2.10)
Как было изложено в главах 1 и 2, окислы вольфрама летучи и при достижении определенных температур происходит их возгонка и испарение.
Интенсивное испарение окисла WO2 начинается после его плавления, которое происходит при температуре, лежащей в интервале 1500–1600 К. Учтем в тепловом балансе проводника теплопотери, идущие на испарение окисла WO2.