Волновое сопротивление
Оглавление
Отражение и прохождение плоских волн на границе двух сред при нормальном падении_ 4
Отражение и прохождение плоских волн на границе двух сред при наклонном падении_ 9
Основные методы измерения акустических сопротивлений_ 12
Введение
При решении различного рода прикладных задач акустики, важное значение приобретают величины различных акустических сопротивлений — акустического, удельного акустического и механического.
Все эти сопротивления имеют активную и реактивную (управляемую гибкостью или массой)·составляющие.
Акустическое сопротивление
, (1)
где Ρ — звуковое давление;
— колебательная скорость в системе;
S — площадь, для которой определяют сопротивление.
Акустическое сопротивление используют при исследовании вопросов распространения звуковых волн в звукопроводах переменного сечения с поперечными размерами меньше длины волны. В этом случае сопротивление остается постоянным, так как давление вдоль канала не изменяется, а колебательная скорость изменяется обратно пропорционально площади поперечного сечения.
Удельное акустическое сопротивление, называемое иногда также волновым, определяется отношением величины звукового давления в определенной точке среды к величине колебательной скорости в этой же точке:
. (2)
Удельное акустическое сопротивление безграничной среды определяется произведением плотности на величину скорости распространения звука в среде:
. (3)
Таким образом, измерение удельного акустического сопротивления для безграничной однородной среды (практически это соответствует случаю, когда размеры образцов исследуемого материала значительно превышают длину звуковой волны) сводится κ измерению плотности среды и скорости распространения в ней звука.
Для малых размеров вещества по сравнению с длиной волны, неоднородных, имеющих сложную форму, удельное акустическое сопротивление по формуле (3) определить нельзя, кроме того, оно имеет комплексный характер, что обусловлено наличием угла сдвига фаз между звуковым давлением и колебательной скоростью.
Механическое сопротивление численно равно отношению силы F, действующей на входе колебательной системы, к вызываемой ею колебательной скорости:
. (4)
Отражение и прохождение плоских волн на границе двух сред при нормальном падении
Пусть плоская волна падает нормально на плоскую границу z=0 между двумя однородными средами. В первой среде возникает отраженная волна , а во второй — прошедшая .
Мы увидим сейчас, непосредственно произведя расчет, что отражение и прохождение всегда правильные. Отраженную и прошедшую волны можно записать в виде
, ,
где и определяются свойствами сред и не зависят от формы волны. Для гармонических волн падающую, отраженную и прошедшую волны можно записать в виде
, , .
Величины коэффициента отражения и коэффициента прохождения нужно подобрать так, чтобы были удовлетворены граничные условия. Граничных условий два: равенство давлений и равенство скоростей частиц по обе стороны границы. Со стороны первой среды берется суммарное поле падающей и отраженной волны, со стороны второй — поле прошедшей волны.
Условие равенства давлений по обе стороны границы, или, что то же, непрерывность давления при переходе через границу, реально выполняется всегда. Нарушение этого условия вызвало бы бесконечное ускорение границы, так как сколь угодно тонкий слой сколь угодно малой массы, включающий внутри себя границу, находился бы тогда под действием конечной разности давлений по обеим сторонам слоя. В результате разность давлений выровнялась бы мгновенно.
Условие равенства скоростей выражает неразрывность среды на границе: среды не должны отдаляться друг от друга или проникать взаимно друг в друга. Это требование может на практике оказаться нарушенным, например, при кавитации, когда внутри жидкости образуются разрывы (разрывы возникают легче на границе двух сред, чем внутри одной среды). Будем считать, что нарушения граничных условий не происходит. В противном случае нижеследующий расчет неприменим, а отражение и прохождение окажутся неправильными.
Скорости частиц в падающей, отраженной и прошедшей волнах даются формулами
, , .
Граничные условия можно написать так:
при , , .
Подставляя сюда соответственные выражения для давлений и скоростей частиц, найдем, сокращая на p(t):
, (5)
Число граничных условий равно числу возникающих (помимо падающей) волн — отраженной и прошедшей, так что, подбирая соответственным образом оставшиеся пока неопределенными множители и , всегда можно удовлетворить обоим граничным условиям, причем единственным образом. И это правило общее. В других акустических задачах число граничных условий может оказаться другим. Тогда возникнет и другое число волн, но оно снова равно числу граничных условий.
В исключительных случаях удается удовлетворить граничным условиям меньшим числом волн (например, коэффициент отражения может обратиться в нуль), но никогда не бывает, чтобы при данном числе граничных условий падающая волна вызывала бы возникновение большего числа различных волн: так как равным числом волн уже можно удовлетворять граничным условиям, то получилось бы, что при одной и той же падающей волне и одних тех же препятствиях могут возникнуть различные волновые поля, а это противоречит принципу причинности.
Система (5) имеет единственное решение:
, . (6)
Это — так называемые формулы Френеля (для нормального падения). Мы видим, что коэффициенты отражения и прохождения зависят только от волновых сопротивлений сред, и если эти сопротивления равны для обеих сред, то для нормального падения плоской волны среды акустически неразличимы: отражение от границы отсутствует и волна проходит во вторую среду целиком, как если бы все пространство было заполнено только первой средой. Для такого полного прохождения вовсе не требуется, чтобы плотности обеих сред и скорости звука в них равнялись друг другу в отдельности, т. е. чтобы совпадали механические свойства сред: достаточно равенства произведений плотности на скорость звука.
В вопросах статики более жесткой средой естественно называть среду с меньшей сжимаемостью. Поведение таких сред ближе к поведению абсолютно жесткого тела, чем поведение сред с большей сжимаемостью. В акустике сжимаемость еще не определяет того, ведет ли себя данная среда по отношению к падающей на нее волне как податливая или как жесткая граница. В акустике следует сравнивать волновые сопротивления сред, т. е. отношения плотности к сжимаемости: та из двух сред жестче, для которой это ношение больше. Это обстоятельство снова подчеркивает своеобразие волновых задач сравнительно с задачами механики тел.
Меняя местами рс и р'с', найдем коэффициенты отражения и прохождения и для волны, падающей из второй среды на границу с первой: абсолютная величина коэффициента отражения будет та же, что и при падении из первой среды, но знак его изменится на обратный. Коэффициент прохождения изменится в отношении волновых сопротивлений сред. По абсолютной величине коэффициент отражения всегда меньше единицы (что следует и прямо из закона сохранения энергии); он положителен, если волна падает из среды с меньшим волновым сопротивлением, и отрицателен в обратном случае. Коэффициент прохождения всегда положителен и не превосходит 2.
Таким образом, отраженная и прошедшая волны равны:
, .
Давление и скорость на границе (безразлично, с какой стороны от границы) равны:
, . (7)
Отношение давления к скорости частиц на границе оказывается равным волновому сопротивлению второй среды р'с'. Это можно было предвидеть, и не делая расчета, поскольку во второй среде имеется только бегущая волна.
Из формул Френеля видно, что коэффициенты отражения и прохождения зависят не от самих значений волнового сопротивления сред, а от их отношения. Отношение волновых сопротивлений первой и второй среды называют относительным волновым сопротивлением. Формулы Френеля выражаются через относительное волновое сопротивление следующим образом:
, (8)
Очевидно,
,
.
Рис. 1. Зависимость коэффициента отражения от относительного волнового сопротивления сред ζ. Для ζ>1 следует снять с графика значение для 1/ζ и считать коэффициент отражения положительным.
На рис. 1 дан график зависимости коэффициента отражения от ζ. Согласно последним формулам можно обойтись участком графика для ζ<1 (где <0). Значения коэффициента прохождения получаются прибавлением единицы к коэффициенту отражения. При ζ=1. коэффициент отражения равен нулю и волна, нормально падающая на границу раздела двух сред, проходит из первой среды во вторую целиком, не отражаясь. Картина в первой среде в этом случае такая, как если бы волна полностью поглощалась границей. В этом случае достаточно возникновения только одной волны (прошедшей), чтобы, совместно с падающей, удовлетворить обоим граничным условиям. При ζ>1 коэффициент отражения положителен и при 殥 стремится к единице.
Значения поля на границе, отнесенные к полю в падающей волне, равны
, .