Волновой генетический код

Еще одно подтверждение нашей трактовки кодовых функций генома получено в 1994г. американскими исследователями [12]. Работая с “кодирующими” и “некодирующими” последовательностями ДНК эука-риот (в рамках старых представлений о генах), эта научная группа из Бостона пришла к выводу, противоречащему догме о том, что знаковые функции сосредоточены только в белок-шифрующих участках ДНК. Они применили метод статистического анализа естественных и музыкальных текстов, известный как закон Ципфа-Мандельброта, и принцип избы-точности текстовой информации Шеннона, рассчитываемый как энтропия текстов (относительно энтропии текстов и статистики распределения слов в текстах см., например, [17]). В результате они получили, что “некодирующие” районы ДНК более схожи с естественными языками, чем “кодирующие”, и что, возможно, “некодирующие” последователь-ности генетических молекул являются основой для одного (или более) биологических языков. Кроме того, авторами был разработан статистический алгоритм поиска кодирующих последовательностей ДНК, который выявил, что белок-кодирующие участки обладают существенно меньшими дальнодействующими корреляциями по сравнению с зонами, разделяющими эти участки. Распределение ДНК-последовательностей оказалось настолько сложным, что использованные методы переставали удовлетворительно работать уже на длинах, превышающих 103 - 102 пар оснований. Распределение Ципфа-Мандельброта для частот встреча-емости “слов” с числом нуклеотидов от 3 до 8 показало большее соответствие естественному языку некодирующих последовательностей по сравнению с кодирующими. Еще раз подчеркнем, что кодирование авторы понимают как запись информации об аминокислотной последовательности, и только. И в этом парадокс, заставивший их заявить, что некодирующие регионы ДНК - это не просто “junk” (в переводе с английского - “мусор”), а структуры, предназначенные для каких-то целей с неясным пока назначением. Дальнодействующие корреляции в этих структурах авторам также непонятны, хотя и обнаружена нарастающая сложность некодирующих последовательностей в эволюции биосистем, что продемонстрировано на примере семейства генов тяжелой цепи миозина при переходе от эволюционно низких таксонов к высоким. Эти данные полностью соответствует нашим идеям о том, что именно “некодирующие” последовательности ДНК, т.е. около 95 - 98 % генома, и являются стратегическим информационным содержанием хромосом. Оно имеет материально-волновую природу и поэтому многомерно и, по своей сути, выступает как ассоциативно-образная лингвистиковолновая программа эмбриологического начала, смыслового продолжения и логического конца любой биосистемы. Поняв это, авторы с ностальгической грустью прощаются со старой и хорошо послужившей моделью генетического кода, не предлагая, правда, ничего взамен.

Еще одна фундаментальная особенность голографии, экстраполи-рованная на биосистему, дает большую ясность в понимании волновых механизмов “самоанализа” биосистемы. Так, открытый Денисюком “принцип относительности в голографии” (доплеровская голография) выявил способность интерферограмм, записывающих движущиеся в трехмерном пространстве объекты, как бы предсказывать их пространственное положение в будущем. Если доплеровская голограмма формируется волной, отраженной от движущегося объекта, то обращенная такой голограммой волна, идя обратным ходом, фокусируется не на сам объект, а несколько впереди его. При этом существенно, что точка фокусировки обращенной волны является в этом случае именно той точкой, в которую переместится объект за время, пока обращенная волна распространится от голограммы до этого объекта. Нет оснований считать, что принцип относительности в голографии не применим к биосистеме, если сама голография уже используется организмом в мозговой памяти. Этот принцип может являться элементом оценки динамики метаболических процессов и “слежения” за движущимися внутриклеточными структурами и за крупномасштабной динамикой морфогенетических тканевых перестроек. Доплеровская система эндогенного биоконтроля дает способ элементарной прекогниции метаболических событий. С этим перекликается другое, близкое описываемым, свойство голограмм. Доказано, что с голограмм возможно считывание сигнальных импульсов с обращенной временной и пространственной структурой и продемонстрировано, что порфириновые компоненты таких важнейших биомолекул как гемоглобин и хлорофилл в полистирольной матрице могут голографически записывать разнесенные во времени лазерные импульсы. При считывании воспроизводится как относительная задержка, так и временная форма записанного сигнала. Таким образом, в принципиальном плане можно представить уже не только внутреннее динамическое пространственное “самоотсле-живание” биосистемой самой себя, но и аналогичный контроль за структурой собственного времени с анализом коротких временных отрезков, направленных как в прошлое, так и в будущее.

Работы по обращению временного сигнала голограммой важны и как пример, что средой памяти такого рода могут служить ключевые биомолекулы живых систем. И это не случайно. Фотосинтез (хлорофилл) и дыхание (гемоглобин) - первоистоки жизни на Земле, а структура времени для биосистем также важна для них как структура собственного пространства, и контроль за ними может осуществлять фундаментальный волновой принцип интерференции и дифракции.

Порфирины - не единственный бионоситель голографической памя-ти. Аналогично работает сложный фоточувствительный белок микробных клеток бактериородопсин. Следующим важнейшим бионосителем голо-графической информации является производное коллагена - желатина. Этот субстрат с 1968 года стал классическим объектом для изучения механизмов формирования амплитудных и амплитудно-фазовых голо-графических решеток в различных диапазонах электромагнитных полей. Использование производных коллагена подтверждает обсуждавшуюся выше мысль о том, что система внеклеточных матриксов, структурнофункциональной основой которых является коллаген, работает с использованием собственной памяти на интерферирующие поля и (или) способна к синтезу эпигенознаковых дифракционных решеток типа псевдоголограмм без участия интерферирующих полей.

Не исключено, что в клетках и тканях используется тепловой диапазон эндогенных полей для автосканирования и записи. Известно, что для записи на желатине используется ИК-СО лазер (длина волны 10,6 мкм), который вызывает в ней локальные необратимые конфор-мационные переходы типа спираль-клубок, связанные со структурными состояниями гидратационной воды. Существенным свидетельством правильности голографической парадигмы, кроме наших исследований, служат работы Будаговского и Евсеевой, показавших в прямых экспериментах возможность дистантной трансляции биологически активного морфогенетического голографического сигнала с растения-донора на каллусную ткань растения-акцептора близкого вида .

Возможно, неким приближением к тому, что происходит в биосистеме и коррелирует с упоминавшимися работами, служат также исследования, в которых обнаружено, что гели коллагена обладают способностью каномально долгому затуханию собственных макроконформа-ционных колебаний, давая при этом повторяющиеся, но разноплановые фурье-спектры, что нами подтверждено и развито в теоретическом и экспериментальном планах не только для коллагена, но и для ДНК и рибосом. Этот феномен, возможно, связан с солитонообразованием на информационных биополимерах в форме явления возврата Ферми-Паста-Улама. Свойство аномально малой затухаемости колебаний коллагена находит довольно неожиданное подтверждение в электроакустике костей. Обнаружена спонтанная генерация переменных электрических волн костной тканью даже тогда, когда она взята у мертвых животных, спустя многие часы после их смерти. Заманчиво объяснить это явление колебаниями коллагеновых фибрилл в составе костной ткани и генерацией ими полей за счет своих электретных свойств, известных для коллагена. Если это правильно, получает объяснение еще один необычный факт: пленки-подложки из коллагена, используемые как искусственный внеклеточный матрикс при выращивании на них культуры фибробластов, при укалывании иглой начинают организовывать упорядоченные движения фибробластов. Последние собираются в четкие ритмические паттерны, причины возникновения которых не ясны. И здесь можно проследить явление того же порядка, что и в случае генерирующей поля изолированной костной ткани. В обоих случаях имеют место квазиспонтанные колебания гелей коллагена, порождающие акустические и электрические поля, которые дополнительно возбуждаются уколом во втором случае. Система коллаген-фибробласты in vitro будет в таком случае элементарной моделью матрично-клеточных морфогенетических отношений, когда запускаются механизмы клеточно-тканевых движений по программам волновых фронтов акустико-электромагнитных голограмм динамичной системы “клетки U внеклеточный матрикс” с жидкокристаллическими компонентами, способными помнить интерферирующие поля.

Теоретически информационная емкость голографических решеток даже в двумерном варианте при записи электромагнитных колебаний огромна, так как они несут восьмимерную информацию. Объем голог-рафической памяти в биосистеме (помимо мозга) может быть еще большим за счет записи в трехмерной жидкокристаллической среде так называемых мультиплексных голограмм, когда меняются отношения интенсивности опорного и объектного пучков и меняются углы между ними, что логично предположить в мобильной тканевой среде организма.

Расшифровка механизмов быстрой и безинерционной передачи больших массивов волновой информации в организме позволяет по иному взглянуть на проблемы онкологии. Действительно, трудно иначе объяснить известные эксперименты по индукции опухолей имплантированными в ткань шлифованными (отражающими волны) инородными материалами. Шероховатые инородные предметы вызывают опухоли в 12% случаев по сравнению с 49% зеркальных того же состава. В этом случае переродившиеся клетки, дающие клоны опухолевых, возникают в соединительно-тканной капсуле, окружающей инородное тело, или редко за пределами капсулы, но они никогда не обнаруживаются в монослое клеток, лежащих непосредственно на инородном теле. Для естественных эндогенных электромагнитных и акустических полей организма, отражающие их инородные тела являются шумовыми помехами в передаче волновой информации по голографическим и солитонным механизмам.

Как один из путей нового понимания генома нами было начато изучение некоторых трудно интерпретируемых феноменов жизненных форм. К числу таких необычных и непонятных (“аномальных”) явлений относятся эффекты следовой памяти генетического материала, обнаруженные нами и независимо группой Роберта Пекоры (США). Сюда же относится феномен так называемого фантомного листового эффекта, подтвержденного во многих лабораториях, в том числе и нами. Такую память генома можно рассматривать как один из видов генетической полевой памяти биосистем на молекулярно-ткане-органном уровне. Она реализуется одновременно как ассоциативно-голографическая и как память последействия ДНК и дает иные версии работы хромосом, дополняющие уже известные механизмы и переводящие проблему биологического морфогенеза в иные гносеологические планы. Эта проблема нами исследована одновременно в теоретико-биологическом, физико-мате-матическом и экспериментальном планах [8,25,27,37]. В связи с этим представляется, что существует геносемиотический сектор работы хромосомного континуума, в котором происходит дуалистическое расщепление смысловых рядов ДНК на уровни вещества (реплики РНК и белков, знаковые топологии хромосом) и поля (знаковые акустика и электромагнитные излучения генома). Исходя из этого, кодирующую иерархию хромосомного аппарата эукариот можно представить следующим образом.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать