Где До = df2 – (2do + 5m) = 294-(2·10+3·5) = 259мм
Диаметр отверстий в диске колеса
5.Конструктивные размеры корпуса редуктора
Толщина стенок корпуса и крышки
d = 0,025×aw + 1мм = 0,025 × 180 + 1 = 5,5 мм;
d1 = 0,02×aw +1мм = 0,02 × 180 + 1 = 4,6 мм
принимаем d = d1 = 8мм.
Толщина фланцев поясов корпуса и крышки
b = b1 = 1,5× d = 1,5 × 8 = 12 мм.
Толщина нижнего пояса корпуса
р = 2,35 × d = 2,35 × 8 = 18,8 мм, принимаем p = 20 мм.
Диаметры болтов:
Фундаментных: d1 = (0,03¸0,036)×аw + 12 = (0,03¸0,036)×180 + 12 = (17,4¸18,5) мм; принимаем болты с резьбой М18;
крепящих крышку к корпусу у подшипников:
d2 = (0,7¸0,75)×d1 = (0,7¸0,75)×18 = (12,6¸13,5) мм, принимаем болты с резьбой М12.
соединяющих крышку с корпусом: d3 = (0,5¸0,6)×d1 = (0,5¸0,6)×18 = (9¸10,8) мм; принимаем болты с резьбой М10.
6. Расчет цепной передачи
Выбираем приводную роликовую однорядную цепь. Крутящий момент на валу
Т2 = 126,8Н·м
Передаточное отношение определено выше Uц = 3,55.
Число зубьев ведущей звездочки
z3 = 31 – 2Uц = 31 – 2 × 3,55 = 23,9; принимаем z3 = 24.
Число зубьев ведомой звездочки
z4 = z3×Uц = 24 × 3,55 = 85,2. Принимаем z4 = 85
Фактическое передаточное отношение
что соответствует принятому.
Оклонение Δ =
Допускается ± 3%
Определяем расчетный коэффициент нагрузки (формула 7.38[1]);
Кэ = Кд×Ка×Кн×Кр×Ксм×Кп = 1×1×1×1,25×1×1,25 = 1,56;
где Кд = 1 – динамический коэффициент при спокойной нагрузке;
Ка = 1 – коэффициент, учитывает влияние межосевого расстояния при ац £ (30÷60)t;
Кн = 1 – коэффициент влияние угла наклона линии центров при = 45°; Кн =1,0
Кр – коэффициент, учитывает способ регулирования натяжения цепи Кр = 1,25 при периодическом регулировании натяжения цепи;
Ксм – коэффициент учитывает способ смазки; при непрерывной смазке Ксм = 1,0;
Кп – учитывает продолжительность работы передачи в сутки, при двухсменной работе Кп = 1,25.
Для определения шага цепи надо знать допускаемое давление [p] в шарнирах цепи. По таблице 7.18 [1] при n2 = 238 об/мин, ориентируясь на шаг цепи t = 19,05 принимаем [p] = 24 МПа.
Шаг однорядной цепи
мм.
Подбираем по таблице 7.15 [1] цепь ПР–25,4–60 по ГОСТ 13568-75, имеющую: шаг t = 25,4 мм; разрушающую нагрузку Q = 60кН; массу q = 2,6 кг/м;
Аоп = 179,7мм2.
Скорость цепи
м/с.
Окружная сила
H.
Давление в шарнирах проверяем по формуле 7.39 [1]:
МПа.
Уточняем по таблице 7.18 [1] допускаемое давление.
р = 23 [ 1 + 0,01 (z3 – 17)] = 21 [1 + 0,01 (24 – 17)] = 22,5 МПа.
Условие р £ [p] выполнено.
Определяем число звеньев цепи (формула 7.36 [1])
,
где (стрaница 148 [1]); zå = z3 + z4 = 24 + 85 = 109.
тогда Lt = 2 · 50 + 0,5 · 109 + = 156,4. Округляем до четного числа Lt = 156.
Уточняем межосевое расстояние цепной передачи по формуле 7.37 [1]
Для свободного провисания цепи предусматриваем возможность уменьшения межосевого расстояния на 0,4%, т.е. на 1265 · 0,004 » 5 мм.
Определяем диаметры делительных окружностей звездочек по формуле 7.34 [1]
мм;
мм.
Определяем диаметры наружных окружностей звездочек.
мм
мм,
где d1 = 15,88 мм – диаметр ролика цепи (таблица 7.15 [1]).
Силы, действующие на цепь:
Окружная Ftц = 1300Н (определены выше).
От центробежных сил Fv = q · u2 = 2,6 · 2,422 = 16 H.
От провисания цепи Ff = 9,81 · Kf · q · ац = 9,81 · 1,5 · 2,6 · 1,27= 49 Н,
Расчетная нагрузка на вал Fв = Ftц + 2Fγ = 1300+ 2 · 49 = 1398H.
Проверяем коэффициент запаса прочности цепи (формула 7.40 [1])
> [S] = 8,4
где [S] = 8,4– нормативный коэффициент запаса прочности цепи (таблица 7.19 [1]).
Условие S > [S] выполнено
Размеры ведущей звездочки:
dd3 =194.6мм; Дез = 206мм
диаметр ступицы звездочки
Дст3= 1,6 dв2 = 1,6 · 32 = 52мм;
длина ступицы lст3 = (1,2¸1,6) · dв2 = (1,2¸1,6) · 32 = (38,4÷51,2) мм;
принимаем lст3 = 50 мм.
Толщина диска звездочки
С = 0,93 Вн = 0,93 · 15,88 =14,8 мм
где Вн = 15,88 мм – расстояние между пластинами внутреннего звена цепи (табл. 7.15 [1])
7. Первый этап компоновки редуктора
Компоновку выполняется в два этапа. Превый этап позволяет приближенно определить положение зубчатых колес и ведущей звездочки цепной передачи относительно опор для последующего определения опорных реакций и набора подшипников.
Компоновочный чертеж выполняем в одной проекции – разрез по осям валов, при снятой крышке корпуса в масштабе М 1:1.
Примерно по середине листа проводим горизонтальную осевую линию, затем две вертикальные оси валов на расстоянии аw = 180 мм.
Вычерчиваем упрощенно шестерню и колесо: шестерня выполнена за одно целое с валом: длина ступицы колеса равна ширине венца колеса.
Очерчиваем внутреннюю стенку корпуса:
а) принимаем зазор от окружности вершин зубьев колеса до внутренней стенки корпуса А = δ =10 мм;
б) принимаем зазор между торцом ступицы шестерни и внутренней стенкой корпуса А1 = 10 мм;
в) принимаем зазор между наружным кольцом подшипника ведущего вала и внутренней стенкой корпуса А2 = 10 мм.
Предварительно намечаем радиальные шарикоподшипники легкой серии по ГОСТ 8338-75. Габариты подшипников выбираем из таблицы П3. [1] по диаметру вала в месте посадки подшипника: dп1 = 30 мм; dп2 = 35 мм.
Условное обозначение подшибника |
d |
D |
B |
Грузоподъёмность, кН |
|
Размеры, мм |
|||||
206 |
30 |
62 |
16 |
19,5 |
10 |
207 |
35 |
72 |
17 |
25,5 |
13,7 |
Решаем вопрос смазки подшипников. Принимаем для подшипников пластичную смазку. Для предотвращения вытекания смазки внутрь и вымывания пластичной смазки жидким маслом из зоны зацепления устанавливаем мазеудерживающие кольца. Их ширина определяет размер У=10 мм; принимаем У = 10 мм.
Находим расстояние от середины шестерни до точек приложения реакции подшипников к валам:
на ведущем валу мм;
на ведомом валу мм;
тоесть l1 = l2 = 54 мм.
Из расчета цепной передачи определяем расстояние от точки приложения натяжения цепи к валу, до точки приложения реакции ближайшего из подшипника ведомого вала.
Длина гнезда подшибника
мм,
S = 10 мм – толщина врезной крышки;
Определяем расстояние от точки приложения натяжения цепи к валу до реакции ближайшего подшибника ведомого вала
мм
8. Проверка долговечности подшипников
8.1 Ведущий вал
Силы, действующие в зацеплении:
Ft = 500 H; Fr = 182 H, из первого этапа компоновки l1 = 46 мм.
Расчетная схема вала
Определяем реакции опор:
а) в горизонтальной плоскости H;
б) в вертикальной плоскости Н.
Определяем изгибающие моменты и строим эпюры:
а) в горизонтальной плоскости
Mx1 = 0; Mx2 = 0; Mcx = Rx1· l1 = 440· 54 = 23760 H·мм = 23,76 Н·м;
б) в вертикальной плоскости
My1 = 0; My2 = 0; Mcy = Ry1· l1 = 160· 54 = 8640 H·мм = 8,64 Н·м.
Определяем суммарные реакции опор
Так как осевая нагрузка в зацеплении отсутствует, то коэффициент осевой нагрузки
y = 0, а радиальной x = 1,0.
Эквивалентную нагрузку определяем по формуле
Рэ = x · v · R · Кб · Кт
при t < 100° C, температурный коэффициент Кт = 1,0 (табл. 9.20 [1] );
V = 1,0 – коэффициент при вращении внутреннего кольца подшипника.
Кб =1.2 –коэфициент безопасности для редукторов
Тогда Рэ = 1,0 · 1,0 · 470 · 1,2 · 1,0 = 570 H = 0,57кН.
Расчетная долговечность, часов
часов.
8.2 Ведомый вал
Силы действующие в зацеплении: Ft = 880 H; Fr = 320 H; Fц = 1398 H. Крутящий момент на валу Т2 = 126 Н·м. n2 = 238об/мин
Из первого этапа компоновки: l2 = 54 мм; l3 = 70 мм.
Расчетная схема вала
Составляющие действующие на вал от натяжения цепи.
Fцx = Fцy = Fц · sinγ = 1398 · sin 45° = 1398 · 0,7071 = 988 Н.
Определяем реакции опор:
а) в горизонтальной плоскости
åm3 = 0; Fцx· (2l2 + l3) – Ft · l2 – Rx4 · 2l2 = 0;
Н;
åm4 = 0; – Rx3 · 2l2 + Ft · l2 + Fцx · l3 = 0
H.
Проверка:
åxi = 0; Rx3 + Fцx – Ft – Rx4 = 1126 + 988 – 880 – 1234= 0.
Следовательно реакции определены верно.
б) в вертикальной плоскости
åm3 = 0; Fr· l2 + Fцy· (2l2 + l3) – Ry4· 2l2 = 0
H;
åm4 = 0; – Ry3· 2l 2 – Fr· l 2 + Fцy· l 3 = 0;
Н.
Проверка:
åyi = 0; Ry3 + Fr + Fцy – Ry4 = 480 + 320+988 – 1788 = 0.
Следовательно реакции определены верно.
Определяем изгибающие моменты и строим эпюры:
а) в горизонтальной плоскости
Мx3 = 0; Mbx = 0;
Max = - Rx3· l2 = - 1126· 54 = - 60800 H·мм = -60,8 Н·м;
M4х = - Fцx· l3 = - 988 ·70 = - 69160 H·мм = - 69,16 Н·м;
б) в вертикальной плоскости
M3y = 0, M by = 0;
May = Ry3· l 2 = 480 · 54 = 25920 H·мм = 25,92 Н·м;
M4y = - Fцy· l 3 = - 998 · 70 = - 69160 H·мм = - 69,16 Н·м.
Определяем суммарные реакции опор
Н;
Н.
Эквивалентную нагрузку определяем для более нагруженной опоры “4”, так как
R4 > R3.
Значения коэффициентов принимаем те же, что и для ведущего вала:
x = 1,0, v = 1,0, Кт = 1,0, Кб = 1,2. У = 0;
Определяем эквивалентную нагрузку
Рэ4 = x · v · R4 · Кт · Кб = 1,0 · 1,0 · 2,18 · 1,2 · 1,0 = 2,62 кН.
Расчетная долговечность, часов
часов.
Подшипники ведущего вала № 205 имеют ресурс Lh = 69·104 ч, а подшипники ведомого вала № 206 имеют ресурс Lh = 64,52·103 часов.
9. Проверка прочности шпоночных соединений
Шпонки призматические со скругленными торцами. Размеры сечений шпонок, пазов и длины по ГОСТ 23360 – 78. Материал шпонок сталь 45, нормализованная.
Напряжения смятия и условие прочности
;
допускаемые напряжения при стальной ступице [см] = 120 МПа, а при чугунной ступице [G см] = 70 МПа.
9.1 Ведущий вал
Крутящий момент на валу Т1 = 31,7 Н·м.
Шпонка на выходном конце вала для соединения муфтой с валом электродвигателя. По таблице 8.9 [1] при dв1 = 18 мм находим b×h = 8×7 мм; t1 = 4 мм; длина шпонки
l = 40 мм, при длине ступицы полумуфты lст = 45 мм (Таблица 11.5 [1]).
Тогда
9.2 Ведомый вал
Крутящий момент на валу Т2 = 126,8 Н·м.
Шпонка под зубчатым колесом dк2 = 40 мм. По табл. 8.9 [1] принимаем b×h = 12×8 мм; t1 = 5 мм; длина шпонки l = 45 мм . При длине ступицы колеса lст3 = 50 мм.
Тогда
Шпонка на выходном конце вала, под ведущую звёздочку цепной передачи,
dв2 = 32мм; По таблице8.9[1] b×h = 10×8; t 1 = 5мм; l = 50мм; при длине ступицы звёздочки lст = 55мм
Звёздочка литая из стали 45Л
Тогда
Вывод: Условие см £ [см] выполнено.
10. Уточненный расчет валов
Будем выполнять расчет для предположительно опасных сечений. Прочность соблюдена при S ³ [S].
10.1 Ведущий вал
Материал вала сталь 45, улучшенная так как вал изготовлен за одно целое с шестерней. По таблице 3.3 [1] при диаметре заготовки до 90 мм (в нашем случае da1 = 78 мм) принимаем в = 780 МПа.
Предел выносливости при симметричном цикле изгиба
= 0,43·в = 0,43 · 780 = 335 МПа.
Предел выносливости при симметричном цикле касательных напряжений
t-1 = 0,58· = 0,58 · 335 = 193 МПа.
Сечение А-А .
Это сечение выходного конца вала dв1 = 24 мм под муфту, для соединения вала двигателя с валом редуктора. Концентрацию напряжений вызывает наличие шпоночной канавки. По таблице 8.9 [1] при dв1 = 24 мм находим b = 8 мм; t1 = 4 мм. Это сечение рассчитываем на кручение. Коэффициент запаса прочности сечения
.
Момент сопротивления кручению
мм3.
Крутящий момент на валу Т1 = 12,5 Н·м.
Амплитуда и среднее напряжение цикла касательных напряжений
МПа.
Принимаем по таблице 8.5 [1] K = 1,78,
по таблице 8.8 [1] et = 0,83 и yt = 0,1. Тогда
10.2 Ведомый вал
Материал вала – сталь 45, нормализованная. По табл.3.3[1] принимаем в = 580 МПа.
Cечение вала А-А.
Это сечение под зубчатым колесом dк2 = 40 мм. Крутящий момент на валу
Т2 = 126,8 Н·м. Концентрация напряжений обусловлена наличием шпоночной канавки. По табл. 8.9 [1] при dк2=35мм находим b = 12 мм, t1 = 5 мм.
Вал подвергается совместному действию изгиба и кручения.
Момент сопротивления изгибу:
мм3.
Амплитуда нормальных напряжений:
МПа.
Амплитуда и среднее напряжение цикла касательных напряжений:
МПа.
По табл. 8.5 [1] K= 1,58; Kt = 1,48;
По табл. 8.8 [1] e = 0,85; et = 0,73; yt = 0,1.
Коэффициент запаса прочности по нормальным напряжениям
.
Коэффициент запаса прочности по касательным напряжениям
Результирующий коэффициент запаса прочности сечения
Сечение вала Б-Б.
Это сечение выходного конца вала под ведущую звездочку цепной передачи
dв2 = 32мм. Концентрация напряжений обусловлена наличием шпоночной канавки. По табл. 8.9 [1] при dв2=25 мм находим b = 10 мм, t1 = 5 мм.
Вал подвергается совместному действию изгиба и кручения
Изгибающий момент в сечении под звездочкой
Mи = Fц· x , приняв x =50 мм получим
Ми = 1398 · 50 = 69,9 Н·м.
Момент сопротивления кручению
мм3.
Момент сопротивления изгибу
мм3.
Амплитуда нормальных напряжений
МПа; m = 0.
Амплитуда и среднее напряжение цикла касательных напряжений
МПа.
По табл. 8.5 [1] принимаем К= 1,58; Кt = 1,48.
По табл. 8.8 [1] находим e= 0,87; et = 0,76;
Коэффициент запаса прочности по нормальным напряжениям
Коэффициент запаса прочности по касательным напряжениям
Результирующий коэффициент запаса прочности сечения
Вывод: прочность валов обеспечена.
11. Выбор сорта смазки
Смазывание зубчатого зацепления производится окунанием зубчатого колеса в масло, заливаемое внутрь корпуса редуктора.
Объем масляной ванны (Vм) определяется из расчета 0,25 дм3 масла на 1 кВт передаваемой мощности.
Vм = 0,25· Ртр = 3,15 = 0,7 дм3.
По табл. 10.8 [1] устанавливаем вязкость масла. При контактных напряжениях
н = 302 МПа и скорости колес V = 4,26 м/с рекомендуемая вязкость масла
u50 = 28·10-6 м2/c
По табл. 10.10 [1] по ГОСТ 20799 – 75 выбираем масло индустриальное И - 30А.
Подшипниковые камеры заполняют пластичной смазкой УТ-1 (Табл. 9.14 [1]). Периодически смазка пополняется шприцем через пресс – масленки.
12. Посадки деталей редуктора
Посадки назначаем в соответствии с указаниями таблица 10.13. [1]
по ГОСТ 25347 – 82.
Посадка зубчатого колеса на вал .
Посадка ведущей звездочки на вал .
Шейки валов под подшипники выполняем с отклонением вала к6. Отклонения отверстий в корпусе под наружные кольца подшипников по Н7.
Посадки остальных деталей указаны на сборочном чертеже редуктора.
13. Сборка редуктора
Перед сборкой внутреннюю полость редуктора тщательно очищают и покрывают маслостойкой краской. Сборку производят в соответствии с чертежом общего вала, начиная с узлов валов;
На ведущий вал насаживают мазеудерживающие кольца и устанавливают шарикоподшипники номер 206, предварительно нагретые в масле до t = 90 – 100 °С и надевают сквозную подшипниковую крышку.
В ведомый вал закладывают шпонку 12×8×45 мм и напрессовывают колесо до упора в бурт вала, устанавливают распорную втулку, мазеудерживающие кольца, шарикоподшипники номер 207 предварительно нагретые в масле и надевают сквозную подшипниковую крышку.
Собранные валы укладывают в основание корпуса, заполняют подшипниковые камеры пластичной смазкой. Покрывают поверхности стыка корпуса и крышки спиртовым лаком, устанавливают в проточки корпуса глухие врезные подшипниковые крышки и устанавливают крышку корпуса.
Перед установкой сквозных подшипниковых крышек в проточки закладывают войлочные сальники.
Для центровки крышка устанавливается на корпусе с помощью двух конических штифтов.
Проверяют проворачиванием валов отсутствие заклинивания подшипников и закрепляют крышку корпуса болтами.
Ввертывают пробку маслоспускного отверстия с прокладкой, жезловый маслоуказатель и пресс-масленки. Заливают внутрь корпуса масло индустриального И – 30А и закрывают смотровое отверстие крышкой с прокладкой, из маслостойкой резины, и закрепляют крышку болтами.
Собранный редуктор обкатывают и подвергают испытанию на стенде.
Литература
Чернавский С.А. и др. “Курсовое проектирование деталей машин”. М., 1987г.
Устюгов.И.И «Детали машин». М 1981г.
Страницы: 1, 2