Уравнение Шрёдингера, как это требовалось с самого начала для выполнения принципа суперпозиции, линейно и однородно относительно функции Ψ. В точной математической форме принцип суперпозиции сводится к двум утверждениям.
Во-первых, если Ψ1 и Ψ2 — какие-либо два решения уравнения Шрёдингера, то и всякая линейная комбинация их α1Ψ1 + α2Ψ2 с постоянными (вообще говоря, комплексными) коэффициентами α1 и α2 есть также решение того же уравнения. Во-вторых, если волновые функции Ψ1 и Ψ2 описывают какие-либо два состояния системы, то и линейная комбинация α1Ψ1 + α2Ψ2 также описывает какое-то состояние той же системы. Конечно, состояние частицы определяется не самими коэффициентами α1 и α2, а только их отношением α1/α2 . Состояние не изменится, если оба коэффициента умножить на одну и ту же вещественную или комплексную постоянную. Это позволяет, например, функцию Ψ = α1Ψ1 + α2Ψ2 нормировать (если интеграл , взятый по всему пространству, сходится).
Особое значение в квантовой механике имеют стационарные состояния. Это – такие состояния, в которых все наблюдаемые физические параметры не меняются с течением времени. Сама волновая функция Ψ не относится к этим параметрам. Она принципиально не наблюдаема. Не должны меняться во времени только физически наблюдаемые величины, которые могут быть образованы из Ψ по правилам квантовой механики.
Как следует из уравнения (9), вид волновой функции Ψ определяется потенциальной энергией U, т. е., в конечном счете, характером тех сил, которые действуют на частицу. Вообще говоря, U есть функция координат и времени. Для стационарного (не меняющегося со временем) силового поля U не зависит явно от времени. В последнем случае волновая функция Ψ распадается на два множителя, один из которых зависит только от времени, второй – только от координат:
(10)
(Е — полная энергия частицы, (E/ħ) = ω ).
Учтём, что дифференциал (11)
Подстановка функции (10) в уравнение (9) с учётом (11) дает:
Сокращая все члены этого уравнения на общий множитель e-i(E/ħ)t и произведя соответствующие преобразования, получим дифференциальное уравнение, определяющее функцию ψ:
(12)
Если функция U зависит от времени явно, то и решение последнего уравнения – функция ψ – будет зависеть от времени, что противоречит предположению (10).
Уравнение (12) называется уравнением Шрёдингера для стационарных состояний (или уравнением Шрёдингера без времени).
К уравнению Шрёдингера можно прийти и следующим путем следующих рассуждений. Из опытов по дифракции микрочастиц вытекает, что параллельный пучок частиц обладает свойствами плоской волны, распространяющейся в направлении движения частиц. Уравнение плоской волны, распространяющейся в направлении оси x, имеет, как известно, вид:
Это выражение часто пишут в комплексном виде:
(13)
подразумевая, что надо принимать во внимание вещественную часть этого выражения.
Согласно гипотезе де Бройля свободному движению частицы соответствует плоская волна с частотой ω=Е/ħ и длиной волны λ = 2πħ/р. Заменяя ω и λ в выражении (13) соответствующими выражениями, получим волновую функцию для свободной частицы, движущейся в направлении оси х:
(14)
Чтобы найти дифференциальное уравнение, которому удовлетворяет функция (14), воспользуемся соотношением между Е и p:
E= p2/2m. (15)
Продифференцировав функцию (14) один раз по t, a второй раз дважды по x, получим:
Из этих соотношений можно выразить Е и р2 через функцию Ψ и ее производные:
Как видим прослеживается полная аналогия с (7*). Подставляя полученные выражения в соотношение (15) получим дифференциальное уравнение:
Если направление волны не совпадает с осью х (или у, или z), фаза колебаний будет зависеть от всех координат: х, у и z. В этом случае дифференциальное уравнение имеет вид:
Полученное уравнение совпадает с уравнением Шрёдингера (8) (частица по условию свободна, U=0). Подстановка (10) в это уравнение (такая подстановка правомерна, так как U = 0, т. е. не зависит от t) приводит к уравнению Шрёдингера для стационарных состояний:
(16)
Это уравнение совпадает с уравнением (12) для случая U = 0.
Таким образом, мы получили уравнение Шрёдингера для свободно движущейся частицы. Теперь следует обобщить уравнение (16) на случай частицы, движущейся в потенциальном поле сил, когда полная энергия Е слагается из кинетической энергии Т и потенциальной энергии U.
В случае свободной частицы полная энергия Е совпадает с кинетической Т, так что величину Е в уравнении (16) можно трактовать либо как полную, либо как кинетическую энергию частицы. Обобщая уравнение (16) на случай движения частицы в поле сил, нужно решить вопрос о том, что следует подразумевать для такой частицы под величиной Е: полную или только кинетическую энергию. Если принять, что Е – полная энергия частицы, обобщенное уравнение, определяющее ψ, а значит, и сама ψ не будет зависеть от вида функции U, т. е. от характера силового поля. Это, очевидно, не может соответствовать действительному положению вещей. Поэтому следует признать, что при наличии сил, действующих на частицу, вместо Е в уравнение (16) нужно ввести кинетическую энергию частицы Т = Е –U. Произведя такую замену, мы придем к уравнению (12).
Приведенные нами рассуждения не могут рассматриваться как вывод уравнения Шрёдингера. Их цель — пояснить, каким образом можно было прийти к установлению вида волнового уравнения для микрочастицы. Доказательством же правильности уравнения Шрёдингера может служить лишь согласие с опытом тех результатов, которые получаются с помощью этого уравнения.
4. Основные свойства уравнения Шрёдингера
Условия, которым должны удовлетворять решения уравнения Шрёдингера, имеют весьма общий характер. Прежде всего волновая функция должна быть однозначной и непрерывной во всем пространстве. Требование непрерывности сохраняется и в тех случаях, когда само поле
U (х, у, z) имеет поверхности разрыва. На такой поверхности должны оставаться непрерывными как волновая функция, так и ее производные. Непрерывность последних, однако, не имеет места, если за некоторой поверхностью потенциальная энергия U обращается в бесконечность. В область пространства, где U = ∞, частица вообще не может проникнуть, т. е. в этой области должно быть везде ψ = 0. Непрерывность ψ требует, чтобы на границе этой области ψ обращалось в нуль; производные же от ψ в этом случае испытывают, вообще говоря, скачок.
Вид волнового уравнения физической системы определяется ее гамильтонианом, приобретающим в силу этого фундаментальное значение во всем математическом аппарате квантовой механики.
Вид гамильтониана свободной частицы устанавливается уже общими требованиями, связанными с однородностью и изотропией пространства и принципом относительности Галилея. В классической механике эти требования приводят к квадратичной зависимости энергии частицы от ее импульса: Е = р2/2т, где постоянная т называется массой частицы. В квантовой механике те же требования приводят к такому же соотношению для собственных значений энергии и импульса – одновременно измеримых сохраняющихся (для свободной частицы) величин.
Но для того чтобы соотношение Е = р2/2т имело место для всех собственных значений энергии и импульса, оно должно быть справедливым и для их операторов:
(17)
Подставив сюда оператор импульса , получим гамильтониан свободно движущейся
частицы в виде:
где Δ= д2/дх2 + д2/ду2 + д2/дz2 — оператор Лапласа.
В классической (нерелятивистской) механике взаимодействие с внешним полем описывается аддитивным членом в функции Гамильтона – потенциальной энергией взаимодействия U. являющейся функцией координат. Прибавлением такой же функции к гамильтониану системы описывается и взаимодействие в квантовой механике – гамильтониан для частицы, находящейся во внешнем поле:
(18)
где U(x,y,z) – потенциальная энергия частицы во внешнем поле.
Если поле U (х, у, г) нигде не обращается в бесконечность, то волновая функция тоже должна быть конечной во всем пространстве. Это же условие должно соблюдаться и в тех случаях, когда U обращается в некоторой точке в бесконечность, но не слишком быстро - как l/rs с s < 2.
Пусть Umin есть минимальное значение функции U(х, у, г). Поскольку гамильтониан частицы есть сумма двух членов – операторов кинетической и потенциальной U энергий, то среднее значение энергии в произвольном состоянии равно сумме Ē = + Ū. Но все собственные значения оператора (совпадающего с гамильтонианом свободной частицы) положительны; поэтому и среднее значение > 0. Имея также в виду очевидное неравенство Ū > Umin, найдем, что и Ē > Umln . Поскольку это неравенство имеет место для любого состояния, то ясно, что оно справедливо и для всех собственных значений энергии: