Автоматизированный электропривод грузового лифта

Расчет параметров математической модели силовой части электропривода.

 

Расчет параметров силовой части электропривода в абсолютных единицах.

 

Главную цепь системы «тиристорный преобразователь - двигатель» можно представить в виде схемы замещения (рис.6.). В главной цепи действуют ЭДС преобразователя Ed и ЭДС якоря двигателя ЕЯ. На схеме замещения показаны:

Rя,- активные сопротивления якорной цепи двигателя;

2RT - активные сопротивления двух фаз трансформатора;

Rg - фик­тивное сопротивление обусловленное коммутацией тиристоров;

LЯ - индуктивность якорной цепи двигателя;

2LT - индуктивность двух фаз трансформатора.

Направления тока и ЭДС соответствуют двигательному режиму электропривода (см. рис.6.).


Рис. 6 .Схема замещения главной цепи системы


От исходной схемы замещения переходим к эквивалентной схеме (рис.7.), где все индуктивности объединяются в одну эквивалентную индуктивность Lэ, а все активные сопротивления - в одно эквивалентное сопротивление RЭ.


Рис. 7 . Эквивалентная схема замещения главной цепи

Определим параметры силовой части в абсолютных (т.е. физических) единицах.

Фиктивное сопротивление преобразователя, обусловленное коммутацией тиристоров:

Эквивалентное сопротивление главной цепи:

RЭ=RЯ+Rg+2RТ=0,65+0,03+20,25=1,18Ом

Эквивалентная индуктивность главной цепи:

LЭ=LЯ+2LТ=0,014+23,1210-4=0.015Гн

Электромагнитная постоянная времени главной цепи:

Электромагнитная постоянная времени цепи якоря двигателя:

Коэффициент передачи преобразователя:

где Uy max - напряжение на входе системы импульсно-фазового управления тиристорного преобразователя (напряжение управления), при котором угол управления равен нулю и ЭДС преобразователя в режиме непрерыв­ного тока максимальна. В проекте примем U y max=10 В.


Выбор базисных величин системы относительных единиц.

При рассмотрении модели силовой части электропривода как объекта управления параметры и переменные электропривода удобно перевести в систему относительных единиц. Переход к относительным единицам осуществляется по формуле

где Y - значение в абсолютных (физических) единицах; Y6 - базисное значение (также в абсолютных единицах); у — значение в относительных единицах.

Принимаем следующие основные базисные величины силовой части электропривода:

■базисное напряжение:

Uб=ЕЯN=192,76 В

■ базисный ток:

Iб=IЯN=42 A

■ базисную скорость:

■ базисный момент:

Mб=МN=71,6 H*м

■базисный магнитный поток:

Фб=ФN=1,7 Вб

Базисный ток и базисное напряжение регулирующей части электропривода выбираются так, чтобы они были соизмеримы с реальными уровнями токов и напряжений в регулирующей части. Принимаем:

базисное напряжение системы регулирования:

U6р=10В;

базисный ток системы регулирования:

Iбр=0,5 мА.

Рассчитаем производные базисные величины:

базисное сопротивление для силовых цепей:

R б =Uб/Iб=192,76/42=4,59 Ом

базисное сопротивление для системы регулирования:

R бр =Uбр/Iбр=10/0,5*10-3=20000 Ом

Механическая постоянная времени электропривода зависит от суммарного момента инерции и принятых базисных значений скорости и момента:

Расчёт параметров силовой части электропривода в относительных единицах.

На рис. 8. показана структурная схема модели силовой части электропривода как объекта управления. Переменные модели выражены в относительных единицах. В модель входят следующие звенья:

- тиристорный преобразователь (ТП) - пропорциональное звено с коэффициентом передачи kП;

- главная цепь (ГЦ) - апериодическое звено с электромагнитной постоянной времени Т3 и коэффициентом передачи, равным , т.е. эквивалентной проводимости главной цепи в относительных единицах;

- механическая часть (МЧ) - интегрирующее звено с механической постоянной времени Tj;

- звенья умножения на магнитный поток  (поток рассматривается в модели как постоянный параметр).

Входные величины модели представляют собой управляющее воздействие UУ (сигнал управления на входе преобразователя) и возмущающее воздействие mC (момент статического сопротивления на валу двигателя).

Переменными модели являются:

- ЭДС преобразователя ed;

- ЭДС якоря двигателя ея;

- ток якоря двигателя iя;

- электромагнитный момент двигателя m;

- угловая скорость двигателя .

Рис. 8 Структурная схема объекта управления

Определим параметры электропривода в относительных единицах:

- коэффициент передачи преобразователя:

- эквивалентное сопротивление главной цепи:

- сопротивление цепи якоря двигателя:

- магнитный поток двигателя:


Расчет коэффициентов передачи датчиков.

Рассчитаем коэффициенты передачи датчиков в абсолютных единицах так, чтобы при максимальном значении величины, измеряемой датчиком, напряжение на выходе датчика было равно базисному напряжению регулирующей части.

Коэффициент передачи датчика тока:

IЯ(max) - максимальный ток якоря по перегрузочной способности двигате-ля. Максимальный ток определяется по формуле

Коэффициент передачи датчика напряжения:

Коэффициент передачи датчика скорости:

Рассчитаем коэффициенты датчиков в относительных единицах.

Коэффициент передачи датчика тока:

Коэффициент передачи датчика напряжения:

Коэффициент передачи датчика скорости:

Разработка системы управления электроприводом.

 

Выбор типа системы управления электроприводом.

 

В курсовом проекте проектируется аналоговая система управления электроприводом. Система управления строится по принципу подчиненного регулирования координат.

Каждый электропривод снабжается системой автоматического регулирования (САР), предназначенной для изменения по заданному закону основной координаты электропривода, регулирования и ограничения промежуточных координат. В системе регулирования скорости основной координатой является скорость двигателя, а промежуточной — ток якоря. В САР основной координатой является положение исполнительного органа механизма, а скорость и ток — промежуточными.

Система регулирования замкнутая (с обратной связью), т.е. заданное значение координаты сравнивается с фактическим и их разность, усиленная и преобразованная в регуляторе, в конечном счете, воздействует на вход СИФУ тиристорного преобразователя якоря или возбуждения электродвигателя. Системы построены по принципу подчиненного регулирования, в соответствии с которым САР разбивается на несколько контуров, один из этих контуров является внешним, на его входе сравниваются задание и фактическое значение основной координаты. Выход внешнего контура является задающим сигналом для промежуточного контура, на входе которого сравниваются выходной сигнал внешнего контура и фактическое значение промежуточной координаты, и т.д., а выход внутреннего контура воздействует на вход СИФУ.

Выбор структуры системы управления электропривода производится с учетом требований технического задания на электропривод. Основными требованиями к электроприводу являются: поддержание заданной скорости вращения электропривода (с учетом требуемых диапазона регулирования скорости, допустимой статической погрешности поддержания скорости), величина токоограничения при упоре, ускорение электропривода при пуске.

В качестве внутреннего контура принимаем контур регулирования тока якоря. Он применяется, если требуется обеспечить:

-ограничение тока якоря допустимым значением при перегрузках электропривода;

- пуск или торможение электропривода с максимально возможным темпом;

- дополнительную коррекцию во внешнем контуре регулирования скорости.

В качестве внешнего контура принимаем контур регулирования скорости.

Рассмотрим функциональную схему системы управления электроприводом (рис 9). Система управления электроприводом представляет собой двухконтурную систему автоматического регулирования (САР) скорости. Внутренним контуром системы является контур регулирования тока якоря, внешним и главным контуром - контур регулирования скорости.

Для проектируемого электропривода выбираем однократную систему регулирования скорости. Однократная САР скорости по сравнению с двукратной не обладает астатизмом по возмущающему воздействию (моменту сопротивления), однако для проектируемой системы обеспечение такого астатизма не требуется. Однократная САР скорости обладает лучшими динамическими свойствами по сравнению с двукратной САР. Для контуров регулирования тока якоря и скорости применяется настройка на модульный оптимум. Данную настройку обеспечивают пропорциональноинтегральный регулятор тока (РТ) и пропорциональный регулятор скорости (PC). Плавное ускорение и замедление привода обеспечиваются с помощью задатчика интенсивности (ЗИ). Для разгона или торможения привода задатчик интенсивности формирует линейно изменяющийся во времени сигнал задания на скорость.

Сигналы обратных связей поступают в систему регулирования от датчиков тока якоря (ДТ), напряжения якоря (ДН) и скорости (ДС). Датчики состоят из измерительного элемента и устройства согласования. Измерительным элементом для датчика тока якоря является шунт в цепи якоря Rш, для датчика напряжения - делитель напряжения Rд, для датчика скорости - тахогенератор (ТГ). Устройство согласования обеспечивает необходимый коэффициент передачи датчика и гальваническую развязку силовых цепей от цепей управления. Косвенный датчик ЭДС (ДЭ) вычисляет ЭДС якоря по сигналам датчиков тока и напряжения. Сигнал ЭДС через звено компенсации (ЗК) подается на вход регулятора тока, что требуется для компенсации отрицательного влияния ЭДС якоря на процессы в контуре тока.


  


Рис. 9 .Функциональная схема системы управления электроприводом.


Некомпенсируемая постоянная времени Тµ закладывается в фильтрах Ф1 и Ф2. Эти фильтры обеспечивают защиту объекта управления от высокочас-тотных помех. Величина Тµ, принятая при проектировании системы, определяет быстродействие контура регулирования тока и всей системы в целом.

Управляющим воздействием на объект управления (силовую часть электропривода) является напряжение управления Uy. Напряжение управ­ления подается на вход системы импульсно-фазового управления тиристорного преобразователя, которая регулирует угол управления, т.е. фазу подачи управляющих импульсов на тиристоры.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать