В транзисторах для диапазона сверхвысоких частот – другие трудности. Их максимальная рабочая частота ограничивается временем задержки, которое требуется для зарядки эмиттерного и коллекторного переходов (поскольку заряд переходов зависит от напряжения, они ведут себя как конденсаторы). Это время можно свести к минимуму, уменьшив до предела площадь эмиттера. Поскольку эффективно действует лишь периферийная часть эмиттера, зубцы делают очень узкими; зато число их увеличивают так, чтобы получить нужный ток. Ширина зубца типичного высокочастотного эмиттера составляет 1–2 мкм, и таковы же промежутки между зубцами. База обычно имеет толщину 0,1–0,2 мкм. На частотах выше 2000 МГц время переноса заряда через базу уже не является определяющей характеристикой – существенно также время переноса через область коллектора; однако этот параметр можно уменьшить только путем уменьшения внешнего напряжения на коллекторе.
2. Анализ процессов в биполярном транзисторе
Рассмотрим как работает транзистор р-n-p типа в режиме без нагрузки, когда включены только источники постоянных питающих напряжений E1 и E2 (рис. 4-1). Полярность их такова, что на эмиттерном переходе напряжение прямое, а на коллекторном переходе - обратное. Поэтому сопротивление эмиттерного перехода мало и для получения нормального тока в этом переходе достаточно напряжения Е1 в десятые доли вольта. Сопротивление коллекторного перехода велико, и напряжение Е2 обычно составляет единицы или десятки вольт. Из рис ( 4-1) видно, что напряжение между электродами транзистора связаны простой зависимостью:
(4.1)
При подключении к электродам транзистора напряжений (рис. 4-1)
эмитерный переход смещается в прямом направлении, а коллекторный -в обратном направлении.
Принцип работы транзистора заключается в том, что прямое смешение эмиттерного перехода, т. е. участка база-эмиттер (), существенно влияет на ток коллектора: чем больше это напряжение, тем больше токи эмиттера и коллектора. При этом изменения тока коллектора лишь незначительно меньше изменений тока эмиттера. Таким образом, напряжение , т. е. входное напряжение, управляет током коллектора. Усиление электрических колебаний с помощью транзистора основано именно на этом явлении.
Рис 4-1. Движение электронов и дырок в транзисторе р-n-р типа.
Физические процессы в транзисторе происходят следующим образом.
При увеличении прямого входного напряжения понижается потенциальный барьер в эмиттерном переходе и соответственно возрастает ток эмиттера . Дырки инжектируются из эмиттера в базу и создают вблизи p-n перехода электрический заряд, который в течении времени (3-5)ΐз компенсируется электронами, приходящими из внешней цепи источника. Так как коллекторный переход подключён в обратном смещении то в этом переходе возникают объемные заряды, показанные на рисунке кружками со знаками «+» и «-» . Между ними возникает электрическое поле.
Если толщина базы достаточно мала и концентрация электронов в ней невелика, то большинство, дырок пройдя через базу, не успевает рекомбинировать с электронами базы и достигают коллекторного перехода. Лишь небольшая часть дырок рекомбинирует в базе с электронами. В результате рекомбинации возникает ток базы. Действительно, в установившемся режиме число электронов в базе должно быть неизменным. Вследствие рекомбинации каждую секунду сколько электронов исчезает, столько же новых электронов возникает за счет того, что из базы уходит в направлении к минусу источника E1 такое же число дырок. Иначе говоря, в базе не может накапливаться много дырок. Если некоторое число инжектированных в базу дырок из эмиттера не доходит до коллектора, а остается в базе. Рекомбинируя с электронами, то точно такое же число дырок должно уходить из базы в виде тока . Поскольку ток коллектора получается меньше тока эмиттера, то в соответствии с первым законом Кирхгофа всегда существует следующее соотношение между токами:
(золотое правило транзистора) (4.2)
Ток базы является бесполезным и даже вредным. Желательно, чтобы он был как можно меньше. Обычно составляет проценты тока эмиттера, т. е. и, следовательно, ток коллектора лишь незначительно меньше тока эмиттера. т. е. можно считать . Именно для того, чтобы ток был как можно меньше, базу делают очень тонкой и уменьшают в ней концентрацию примесей, которая определяет концентрацию электронов. Тогда меньшее число дырок будет рекомбинировать в базе с электронами.
Если бы база имела значительную толщину и концентрация электронов в ней была велика, то большая часть дырок эмиттерного тока, диффундируя через базу, рекомбинировала бы с электронами и не дошла бы до коллекторного перехода. Ток коллектора почти не увеличивался бы за счет дырок эмиттера, а наблюдалось бы лишь увеличение тока базы.
Когда к эмиттерному переходу напряжение не приложено, то практически можно считать, что в этом переходе почти нет тока. В этом случае область коллекторного перехода имеет большое сопротивление постоянному току, так как основные носители зарядов удаляются от этого перехода и по обе стороны от границы создаются области, обеденные этими носителями. Через коллекторный переход протекает лишь очень небольшой обратный ток, вызванный перемещением навстречу друг другу неосновных носителей, т. е. электронов из р-области и дырок из n-области.
Но если под действием входного напряжения возник значительный ток эмиттера, то в область базы со стороны эмиттера инжектируются дырки, которые для данной области являются неосновными носителями. Не успевая рекомбинировать с электронами при диффузии через базу, они доходят до коллекторного перехода. Чем больше ток эмиттера, тем больше дырок приходит к коллекторному переходу и тем меньше становится его сопротивление. Соответственно увеличивается ток коллектора. Иначе говоря, с увеличением тока эмиттера в базе возрастает концентрация неосновных носителей, инжектированных из эмиттера, а чем больше этих носителей, тем больше ток коллекторного перехода,т.е.ток коллектора .
Данное одному из электродов транзистора название «эмиттер» подчеркивает, что происходит инжекция дырок из эмиттера в базу.
По рекомендуемой терминологии эмиттером следует называть область транзистора, назначением которой является инжекция носителей заряда в базу. Коллектором называют область, назначением которой является экстракция носителей заряда из базы. А базой является область, в которую инжектируются эмиттером неосновные для этой области носители заряда.
Следует отметить, что эмиттер и коллектор можно поменять местами (так называемый инверсный режим). Но в транзисторах, как правило, коллекторный переход делается со значительно большей площадью, нежели эмиттерный переход, так как мощность, рассеиваемая в коллекторном переходе, гораздо больше, чем рассеиваемая в эмиттерном. Поэтому если использовать эмиттер в качестве коллектора, то транзистор будет работать, но его можно применять только при значительно меньшей мощности, что нецелесообразно. Если площади переходов сделаны одинаковыми (транзисторы в этом случае называют симметричными), то любая из крайних областей может с одинаковым успехом работать в качестве эмиттера или коллектора.
Поскольку в транзисторе ток эмиттера всегда равен сумме токов коллектора и базы, то приращение тока эмиттера также всегда равно сумме приращений коллекторного и базового токов:
(4.3)
Важным свойством транзистора является приблизительно линейная зависимость между его токами, т. е. все три тока транзистора изменяются приблизительно пропорционально друг Другу. Пусть, для примера, =10мА, = 9,5 мА, = 0,5 мА. Если ток эмиттера увеличится, например, на 20% и станет равным 10 + 2 = 12 мА. то остальные токи возрастут также на 20%: = 0,5 + 0.1 = 0,6 мА и = 9,5 + 1,9 = 11,4 мА, так как всегда должно быть выполнено равенство (4.2), т.е. 12 мА=11,4 мА + 0,6 мА.
А для приращения т оков справедливо равенство (4.3) т .е.
2 мА = 1,9 мА + 0,1 мА.
Мы рассмотрели физические явления в транзисторе типа р-п-p.
Работу транзистора можно наглядно представить с помощью потенциальной диаграммы, которая показана на рис. 4-2 для транзистора типа р-n-p.
Рис. 4-2. Потенциальная диаграмма транзистора
Эту диаграмму удобно использовать для создания механической модели транзистора. Потенциал эмиттера принят за нулевой. В эмиттерном переходе имеется небольшой потенциальный барьер. Чем больше напряжение , тем ниже этот барьер. Коллекторный переход имеет значительную разность потенциалов, ускоряющую движение дырок. В механической модели шарики, аналогичные дыркам, за счет своих собственных скоростей поднимаются на барьер, аналогичный эмиттерному переходу, проходят через область базы, а затем ускоренно скатываются с горки, аналогичной коллекторному переходу.
Помимо рассмотренных основных физических процессов в транзисторах приходится учитывать еще ряд явлений.
Существенное влияние на работу транзисторов оказывает сопротивление базы , т.е. сопротивление, которое база оказывает току базы . Этот ток протекает к выводу базы в направлении, перпендикулярном направлению эмиттер — коллектор. Так как база очень тонкая, то в направлении от эмиттера к коллектору, т. е. для тока , ее сопротивление очень мало и не принимается во внимание. А в направлении к выводу базы сопротивление базы (его называют поперечным) достигает сотен Ом, так как в этом направлении база аналогична очень тонкому проводнику. Напряжение на эмиттерном переходе всегда меньше, чем напряжение , между выводами базы и эмиттера, так как часть подводимого напряжения теряется на сопротивлении базы. С учетом сопротивления можно изобразить эквивалентную схему транзистора для постоянного тока так, как это сделано на рис. 4-3. На этой схеме — сопротивление эмиттера, в которое входят сопротивление эмиттерного перехода и эмиттерной области. Значение у маломощных транзисторов достигает десятков Ом. Это вытекает из того, что напряжение на эмиттерном переходе не превышает десятых долей вольта, а ток эмиттера в таких транзисторах составляет единицы миллиампер. У более мощных транзисторов больше и соответственно меньше. Приближенно определяется формулой (в Омах)
Страницы: 1, 2, 3, 4, 5, 6, 7, 8