Биполярный транзистор КТ3107

                       (10.8)

                              (10.9)

                                                                        (10.10)

где  .

Различают три основных режима работы биполярного транзистора:   активный,   отсечки,   насыщения.

В активном режиме один из переходов биполярного тран­зистора смещен в прямом направлении приложенным к нему внешним напряжением, а другой - в обратном направлении. Соответственно в нормальном активном режиме в прямом направлении смещен эмиттерный переход, и в (10.3), (10.8) напряжение имеет знак «+». Коллекторный переход смещен в обратном направлении, и напряжение  в (10.3) имеет знак « - ». При инверсном включении в уравнения (10.3), (10.8) следует подставлять противоположные полярности напряжений , . При этом различия между инверсным и активным режимами носят только количественный характер.

Для активного режима, когда  и   (10.6) запишем в виде 

                  .

Учитывая, что обычно  и , урав­нение (10.7)  можно  упростить:

                              (10.11)

Таким образом, в идеализированном транзисторе ток коллектора и напряжение эмиттер-база при определенном значении тока  не зависят от напряжения, приложенного к коллекторному переходу. В действительности изменение напряжения  меняет ширину базы из-за изменения размеров коллекторного перехода и соответственно изменяет градиент концентрации неосновных носителей заряда. Так, с увеличением  ширина базы уменьшается, градиент концентрации дырок в базе и ток  увеличиваются. Кроме этого, уменьшается вероятность рекомбинации дырок и увеличивается коэффициент . Для учета этого эффекта, который наиболее сильно проявляется при работе в активном режиме, в выражение (10.11) добавляют дополнительное слагаемое

                                        (10.12)

-  дифференциальное сопротивление запертого  коллекторного p-n-перехода.

Влияние напряжения  на ток  оценивается с помощью коэффициента  обратной  связи  по  напряжению

  ,

который показывает, во сколько раз следует изменять напряже­ние  для получения такого же изменения тока , какое дает изменение напряжения . Знак минус означает, что для обеспечения = const приращения напряжений должны иметь противоположную полярность. Коэффициент  достаточно мал (), поэтому при практических расчетах влиянием коллекторного напряжения на эмиттерное часто пренебрегают.

В режиме глубокой отсечки оба перехода транзистора смещены в обратном направлении с помощью внешних напряжений. Значения их модулей должны превышать . Если модули обратных напряжений приложенных к переходам транзистора окажутся меньше , то транзистор также будет находиться в области отсечки. Однако токи его электродов окажутся  больше,   чем   в   области глубокой  отсечки.

Учитывая, что напряжения  и  имеют знак минус, и считая, что  и , выражение (10.9) запишем  в  виде

                          

                                                        (10.13)

Подставив   в   (10.13)   значение   ,   найденное   из   (10.8), и раскрыв значение  коэффициента А, получим

     

                                                               (10.14)

что   , а  ,  то   выражения   (10.14) существенно  упростятся  и  примут  вид

           

                                                                        (10.15)

        где       ;

Из (10.15) видно, что в режиме глубокой отсечки ток коллектора имеет минимальное значение, равное току единич­ного p-n-перехода, смещенного в обратном направлении. Ток эмиттера имеет противоположный знак и значительно меньше тока коллектора, так как . Поэтому во многих случаях его  считают  равным  нулю:   .

Ток базы в режиме глубокой отсечки приблизительно равен току  коллектора:

                                                                          (10.15)

Режим глубокой отсечки характеризует запертое состояние

транзистора, в котором его сопротивление максимально, а токи

электродов минимальны. Он широко используется в импульс­ных устройствах, где биполярный транзистор выполняет фун­кции  электронного   ключа.

При режиме насыщения оба p-n-перехода транзистора с по­мощью приложенных внешних напряжений смещены в прямом направлении. При этом падение напряжения на транзисторе () минимально и оценивается десятками милливольт. Режим насыщения возникает тогда, когда ток коллектора транзистора ограничен параметрами внешнего источника энергии и при данной схеме включения не может превысить какое-то значение . В то же время параметры источника внешнего сигнала взяты такими, что ток эмиттера существенно больше мак­симального  значения  тока  в коллекторной  цепи:   .

Тогда коллекторный переход оказывается открытым, паде­ние напряжения на транзисторе—минимальным и не завися­щим от тока эмиттера. Его значение для нормального включения  при   малом  токе   () равно

                                                                               

    Для  инверсного  включения

                                                                              (10.16)

В режиме насыщения уравнение (10.12) теряет свою справед­ливость. Из сказанного ясно, что, для того чтобы транзистор из активного режима перешел в режим насыщения, необходимо увеличить ток эмиттера (при нормальном включении) так, чтобы начало выполняться условие . Причем значе­ние тока , при котором начинается этот режим, зависит от тока , определяемого параметрами внешней цепи, в  которую   включен  транзистор.



  9.  Измерение параметров биполярного транзистора.


Для проверки параметров транзисторов на соответствие тре­бованиям технических условий, а также для получения данных, необходимых для расчета схем, используются стандартные изме­рители параметров транзисторов, выпускаемые промышленностью.

 С помощью простейшего испытателя транзисторов измеряются коэффициент усиления по току , выходная проводимость  и начальный ток коллектора

Более сложные измерители параметров позволяют, быстро определив значения , , , ,  транзисторов в схемах ОБ и ОЭ, оценить, находятся ли измеренные параметры в пределах допустимого разброса и пригодны ли испытанные транзисторы к применению по критерию надежности.

Параметры транзисторов можно определить также по имею­щимся в справочниках пли снятым в лабораторных условиях ха­рактеристикам.

При определении параметров обычно измеряют обратные токи коллектора  (всегда) и эмиттера  (при необходимости) в специальных схемах для транзисторов — усилителей, работаю­щих в выходных каскадах, и для транзисторов — переключателей. При измерениях малых токов используют высокочувствительные микроамперметры,   которые  нуждаются   в  защите  от  перегрузок.

Необходимо измерить также напряжения , , , , .

Напряжение  измеряют при заданном токе  ограничен­ном сопротивлением в коллекторе, по наблюдению на экране ос­циллографа участка вольтамперной характеристики, соответст­вующего лавинному пробою. Можно также измерять величину  вольтметром по падению напряжения на ограничивающем сопротивлении. При этом фиксируется показание прибора в мо­мент  резкого   возрастания  тока.   Напряжение  измеряется  по изменению направления тока базы. Напряжение между эмиттером и коллектором фиксируется в момент, когда ток базы  (при этом ). Величину  определяют аналогично напряжению . При нахождении  измерение производится в схеме ОЭ в режиме насыщения при заданном коэффициенте насыщения. Желательно измерения производить в импульсном режиме, чтобы рассеиваемая транзистором мощность была минимальной.  Величи­на  определяется аналогично напряжению  в схеме ОЭ.

Среди параметров, характеризующих частотные свойства тран­зисторов, наиболее просто измерить величину . Для ее определе­ния следует измерить на частоте , в 2 - 3 раза большей , мо­дуль коэффициента передачи тока в схеме ОЭ , тогда . Все частоты , указываемые в качестве параметров, взаи­мосвязаны и могут быть вычислены.

При измерении барьерной емкости коллекторного перехода Ск обычно используют метод сравнения с эталонной емкостью в ко­лебательном контуре и Q-метр.

Емкость измеряется при заданном обратном напряжении на переходе.

Важным является измерение в качестве параметра постоян­ной времени  (обычно в номинальном режиме транзистора). Переменное напряжение достаточно большой частоты ( 5 МГц) подается в цепь коллектор — база и вольтметром измеряется на­пряжение на входе между эмиттером и базой. Затем в измеритель­ную цепь вместо транзистора включается эталонная цепочка RC. Изменяя значения RC, добиваются тех же показаний вольтметра. Полученное RC будет равно постоянной  транзистора.

Тепловое сопротивление  измеряется с помощью термочув­ствительных параметров (,,) с использованием графиков зависимости этих параметров от температуры. Для мощных тран­зисторов чаще всего измеряют величину   для маломощных -

Параметр большого сигнала В измеряется на постоянном токе (отношение /)  или импульсным методом (отношение ампли­туд тока коллектора и базы).

При измерении h-параметров наибольшие трудности возникают при определении коэффициента обратной связи по напряжению, . Поэтому обычно измеряют параметры , ,  а затем вы­числяют по формулам пересчета значение . Измерения мало­сигнальных параметров производятся на частотах не более 1000 Гц.

 

  10. Основные параметры биполярного транзистора.


Электрические параметры.

Напряжение насыщения коллектор-эмиттер при  ,  не более ------ 0,3 В.


Статический коэффициент передачи тока в схеме с общим эмиттером  

при

                      ,  :            

                                       при  Т=298 К ------------  35 – 90

                                       при  Т=358 К ------------  35 – 180

                                       при  Т=228 К ------------- 15 – 90

  Модуль коэффициента передачи тока при  f=100 МГц, ,

 не более  3.

Емкость коллекторного перехода при ,  f=10 МГц  не более  6 пФ

Емкость эмиттерного перехода при , f=10 МГц не более ---8- пФ

Обратный ток коллектора при  не более:

при Т=228 К  и  Т =298 К  ------- 1 мкА

при  Т=358 К --------------------- 10 мкА


Обратный ток коллектор – эмиттер  при   ,     

не более  100 мкА

Предельные эксплутационные данные.


Постоянное напряжение коллектор – эмиттер при  -- 16 В

Постоянное напряжение база – эмиттер при ------------------------------ 5 В

Постоянный ток коллектора:

                                                   при Т=298 К ----------------- 10 мА

                                                   при Т=358 К ----------------- 5 мА

  Импульсный ток коллектора при ,  ------------25 мА

 Постоянная рассеиваемая мощность коллектора:

                                    при Т=228 - 298 К ----------------- 1 мВт

                                    при Т=358 К ------------------------ 5 мВт

   Импульсная рассеиваемая мощность коллектора 50 мВт

Температура окружающей среды --------------------------От 228 до 358 К


Максимально допустимая постоянная рассеиваемая мощность коллектора в мВт при Т=298 – 358 К определяется по формуле:    .

       Графики:




                                                

Рис 12-1 Входные  характеристики.









Рис 12-2. Зависимость обратного тока коллектора от температуры.









Рис 12-3. Зависимость статического коэффициента передачи тока от   напряжения коллектор-эмиттер.

 








Рис 12-4. Зависимость статического коэффициента передачи тока 

  от тока эмиттера.

11. Применение биполярных транзисторов в электронных схемах.

 

Данный радиомикрофон предназна­чен для озвучивания мероприятий, и т. д. Устройство работает в УКВ диапазоне на частоте 87,9 МГц, специально отве­денной для радиомикрофонов, и его сигналы принимают на обычный радио­вещательный приемник с диапазоном УКВ-2. Дальность действия радиоми­крофона в пределах прямой видимос­ти — более 200 м.

Схема и принцип действия. Схема радиомикрофона приведена на рис. 13-1. Передатчик собран на транзисторе VT4 по однокаскадной схеме. Такое решение для миниатюрного устройства, каким является радиомикрофон, оправдано, так как использование в передатчике отдель­но задающего генератора и выходного каскада приводит к снижению его эконо­мичности и возрастанию габаритов.

Как известно, частота LC-генератора, работающего в области 100 МГц, су­щественно зависит от напряжения питания.

Пере­датчик содержит два контура — контур L1C9C10C12C13VD2, Задающий частоту генератора, и выходной контур L3C15C16, связанный с антенной. Это повышает стабильность генерируемой частоты.

Задающий контур подключен к тран­зистору VT4 по схеме Клаппа. Влияние из­менения параметров транзистора VT4 при изменении питающего напряжения на задающий контур введено к миниму­му выбором малого коэффициента вклю­чения транзистора в контур (определяет­ся емкостью конденсаторов СЮ, С12,

С13). Для повышения температурной стабильности частоты применены кон­денсаторы С9, СЮ, С12, С13 с малым ТКЕ, а коэффициент включения в задаю­щий контур варикапа VD2 невелик из-за малой емкости конденсатора С9.

Выходной П-коктур позволяет согла­совать антенну с выходом транзистора

VT4 и улучшает фильтрацию высших гармоник. Выходной контур на­строен на частоту второй гармоники за­дающего контура. Это уменьшает влия­ние выходного контура на задающий контур через емкость перехода коллек­тор—база транзистора VT4, благодаря чему улучшается стабильность частоты передатчика. За счет всех этих мер уход частоты передатчика при изменении питающего напряжения от 5 до 10 В не­велик и подстройки приемника в про­цессе работы не требуется.

Звуковой сигнал с электретного мик­рофона ВМ1 поступает на вход микро­фонного усилителя, собранного на опе­рационном усилителе (ОУ) DA2. Питание микрофон получает через резистор R1 и развязывающую цепь R5C2. Для сни­жения потребляемой мощности на мес­те DA2 использован микромощный ОУ К140УД12. Резистор R10 задает потреб­ляемый ток ОУ около 0,2 мА. Большой мощности от микрофонного усилителя не требуется, потому что он нагружен на варикап, а мощность управления вари­капом, представляющим собой обратносмещенный диод, крайне мала R7 и сопротивление участ­ка сток—исток полевого транзистора VT1 образуют цепь отрицательной об­ратной связи, определяющей коэффи­циент усиления микрофонного усилите­ля. Канал полевого транзистора VT1 служит регулируемым сопротивлением в системе АРУ. При напряжении за­твор—исток, близком к нулевому, со­противление канала — около 1 кОм и ко­эффициент усиления микрофонного усилителя близок к 100. При возраста­нии напряжения до 0,5... 1 В сопротив­ление канала повышается до 100 кОм а коэффициент усиления микрофонного усилителя уменьшается до 1. Это обес­печивает почти неизменный уровень сигнала на выходе микрофонного уси­лителя при изменении уровня сигнала на его входе в широких пределах.

Конденсатор С4 создает спад АЧХ микрофонного усилителя в области высоких частот для уменьшения глубины модуляции на этих частотах и предот­вращения расширения спектра сигнала передатчика. Конденсатор СЗ блокиру­ет цепь обратной связи усилителя DA2 по постоянному току. Через резистор R4 на неинвертирующий вход ОУ DA2 по­ступает напряжение смещения, необхо­димое при однополярном питании.

Транзистор VT3 выполняет функцию детектора системы АРУ и управляет поле­вым транзистором VT1. Порог срабатыва­ния системы АРУ устанавливается подст­роенным резистором R12. Когда сигнал с выхода микрофонного усилителя и отпи­рающее напряжение смещения с части резистора R12 в сумме сравняются с на­пряжением открывания перехода эмит­тер—база транзистора VT3, последний от­крывается, подавая напряжение на затвор полевого транзистора VT1. Сопротивле­ние канала полевого транзистора VT1 уве­личивается, и коэффициент усиления ми­крофонного усилителя уменьшается.

Благодаря АРУ амплитуда сигнала на выходе усилителя поддерживается практически на постоянном уровне. Этот уровень можно регулировать, меняя ре­зистором R12 напряжение смещения транзистора VT3. Цепь R9C5 задает по­стоянную времени срабатывания, а цепь R8C5 — постоянную времени восста­новления системы АРУ. Для компенса­ции температурных изменений напря­жения открывания перехода эмиттер -база транзистора VT3 напряжение на ре­зистор R12 подано с диода VD1,

Транзистор VT3, цепь формирования порога срабатывания АРУ R11R12VD1 и резистор R4, через который поступает смещение на неинвертирующий вход ОУ, получают питание от стабилизатора на­пряжения DA1. Это же напряжение пода­но через резистор R14 в качестве наприжения смещения на варикап VD2. Так как емкость варикапа существенно зависит от приложенного к нему напряжения сме­щения, то к его стабильности предъявляются жесткие требования. Поэтому ста­билизатором DA1 служит микросхема КР142ЕН19, представляющая собой ста­билизатор напряжения параллельного ти­па. Выбором резисторов R2 и R3 зада­ют напряжение стабилизации около 3,5 В на выводе 3 микросхемы DA1. Бал­ластным сопротивлением служит генера­тор тока на полевом транзисторе VT2. что повышает экономичность стабилизатора.

Рис 13-1  Электрическая принципиальная схема радио микрофона.



 



























12. Литература

 

1. И.П. Жеребцов «Основы Электроники», Ленинград «Энергатомиздат» 1985 г.

2. В.Г. Гусев, Ю.М. Гусев «Электроника», Москва «Высшая школа» 1991 г.

3. В.В. Пасынков, Л.К. Чирикин «Полупроводниковые приборы», Москва   «Высшая школа» 1987 г.

4. В.А. Батушев «Электронные приборы», Москва «Высшая школа» 1980 г.

5. Морозова И.Г. «Физика электронных приборов», Москва «Атомиздат»1980 г.

6. Полупроводниковые приборы. Транзисторы. Справочник/ под ред. Н.Н. Горюнова, Москва «Энергатомиздат» 1985 г.

7. Лавриненко В.Ю. «Справочник пополупроводниковым приборам» Киев1984г.

8.  Манаев Е.И. «Основы радиоэлектроники» - М. радио и связь, 1990г.  

9. Степаненко И.П. «Основы микроэлектроники» - М. Советское радио, 1980г.

10. Дулин В.Н. «Электронные приборы» - М. Энергия, 1977г.

11. Журнал «Радио».

  Web-литература



Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать