Δti – временной участок, г;
tn – время перегрузки за сутки, ч.
По таблице «Нормы максимально допустимых систематических и аварийных перегрузок трансформаторов» /12/ в зависимости от эквивалентной температуры охлаждающей среды Θохл, от системы охлаждения трансформатора, от коэффициента начальной загрузки К1ав и от времени перегрузки Tn, определяется коэффициент допустимой аварийной перегрузки Кдоп.ав.
Θохл для Оренбурга составляет – 13,4ºС.
Система трансформатора – М – с естественной циркуляцией воздуха и масла.
Время перегрузки Tn – 6 часов.
К г.доп.ав=1,7
Проверка трансформатора на аварийную перегрузку:
(7.3.3)
250*1,7≥378,34
425кВА>378,34кВА
Выбранные трансформаторы ТП№3 удовлетворяют условиям проверки на аварийную перегрузку.
Проверка трансформаторов на аварийную перегрузку проводится аналогично. Результаты расчетов снесены в таблицу 10.
Таблица 10 Проверка трансформаторов на систематическую и аварийную перегрузку
№ ТП
К*нт
К*нтав
К1ав
К2доп
Sнт*К2доп, кВА
Sm, кВА
ТП № 1
1,26
0,6
0,63
1,6
256
249
ТП № 2
1,45
0,7
0,56
1,7
425
344
ТП № 4
1,65
0,8
0,52
1,8
720
484
ТП № 5
1,84
0,9
0,49
1,9
760
433
ТП № 6
1,45
0,7
0,56
1,7
680
550
8 Выбор схемы распределительных сетей ВН
Распределение электроэнергии от РП до потребительских ТП осуществляется по распределительным сетям 10 кВ. Распределительная и питающая сети 10 кВ используются для совместного питания городских коммунально-бытовых объектов. Городские сети 10 кВ выполняются с изолированной нейтралью /1/.
Схем построения городских распределительных сетей довольно много. Выбор схемы зависит от требования высокой степени надежности электроснабжения, а также от территориального расположения потребителей относительно РП и относительно друг друга.
Следует учитывать, что к электрической сети предъявляются определенные технико-экономические требования, с учетом которых и производится выбор наиболее приемлемого варианта.
Экономические требования сводятся к достижению по мере возможности наименьшей стоимости передачи электрической энергии по сети, поэтому следует стремится к снижению капитальных затрат на строительство сети. Необходимо также принимать меры к уменьшению ежегодных расходов на эксплуатацию электрической сети. Одновременный учет капитальных вложений и эксплуатационных расходов может быть произведен с помощью метода приведенных затрат. В связи с этим оценка экономичности варианта электрической сети производится по приведенным затратам.
Выбор наиболее приемлемого варианта , удовлетворяющего технико-экономическим требованиям, - это один из основных вопросов при проектировании любого инженерного сооружения, в том числе и электрической сети.
Рассмотрим схемы электрических сетей заданного района, а также проанализируем их достоинства и недостатки, с тем, чтобы выбрать наилучшие варианты для технико-экономического сравнения.
Распределительные сети ВН выполняются по схемам: радиальной (одностороннего питания), магистральной, по разомкнутой петлевой с АВР, по замкнутой петлевой.
Представлен вариант распределительных сетей, выполненный по радиальной или магистральной схеме (рисунок 3), так как данный вариант является наиболее простым и не дорогим.
Рисунок 3 – Схемы распределительных сетей
Характерной особенностью этих схем является одностороннее электроснабжение потребителей. При аварии на любом участке линии Л1 и Л2 или на шинах 10 кВ подстанции автоматически отключится головной масляный выключатель В1 или В2 и вне подстанции прекращают подачу электроэнергии потребителям на время ремонта. Такие схемы применяются для потребителей III категории, так как в этих схемах отсутствуют резервное питание и осуществляется минимальная надежность электроснабжения.
Широко в городских сетях применяется распределительная сеть 10 кВ выполненная по кольцевой схеме (рисунок 4). Эта схема дает возможность двухстороннего питания каждой ТП. При повреждении какого-либо участка каждая ТП будет получать питание, согласно обеспеченной надежности электроснабжения потребителей.
Рисунок 4 – Кольцевая схема электроснабжения
Для увеличения электроснабжения магистральная сеть выполняется с двумя источниками питания (от разных секущих шин РП) рисунок 5.
Рисунок 5 – Магистральная схема электроснабжения
В дипломном проекте для сравнения рассматриваются две схемы распределительных сетей ВН: кольцевая схема электроснабжения и магистральная схема с двумя источниками питания.
Согласно /4/ электрические сети 10 кВ на территории городов, в районах застройки зданиями высотой 4 этажа и выше выполняются, как правило, кабельными. Кабельные линии прокладывают в траншеях на глубине не менее 0,7 м /1/.
9 Предварительный выбор сечения кабельной линии 10 кВ
В соответствии с /3/ сечение кабелей с алюминиевыми жилами в распределительных сетях 10кВ при прокладке их в земляных траншеях, следует принимать не менее 35 мм2. Выбор экономически целесообразного сечения производится по экономической плотности тока в зависимости от металла провода и числа часов использования максимума нагрузки /1/:
(9.1)
где Im – расчетный максимальный ток, А;
jэ – нормальное значение экономической плотности тока, А/мм2,
jэ=1,6 А/мм2 /3/
(9.2)
где Sm – максимальная расчетная мощность, передающаяся по кабелю, кВА;
(9.3)
Выбираем сечение кабеля на участке п/ст «Шелковая» - РП с ТП-2 (Рисунок 6).
(.9.4)
где Ку=0,8 /2/
РΣi – суммарная расчетная нагрузка i-й ТП.
Рm0-2=( РΣ1+ РΣ2+ РΣ3+ РΣ4+ РΣ5+ РΣ6)*0,8=(355,64+237+323+450,4+417+
+512)*0,8=1836 кВ
cos φ=0,92 - на шинах РП /2/
tg φ=0,43
Qm0-2= Qm0-1*tg φ=1836*0,43=789,5 кВт
Выбираем кабель марки ААБ с сечением жилы 95 мм2 Iдоп = 240А
Расчет кольцевой распределительной сети 10 кВ
Рисунок 6 – Расчетная схема распределительных сетей 10 кВ, Вариант I, кольцевая схема.
Выбираем сечения кабелей распределительной сети 10 кВ от РП.
Определяется точка потокораздела:
Проверка:
S21+S23=ΣSm
1015,2+1078,8=2094
2094 кВА=2094 кВА
Потоки мощности по участкам:
S36=S23-S3=1078,8-378=700,8 кВА;
S65=S36-S6=700,8-550=150,8 кВА;
S54=S65-S5=150,8-433=-282,2 кВА;
S14=S12-S1=1015,2-249=766,2 кВА;
S45=S14-S4=766,2-484=282,2 кВА;
S56=S45-S5=282,2-433=-150,8 кВА;
ТП-5 является точкой потокораздела:
P21=S21*cos φср.вз.=1015,2*0,94=954,3 кВт;
P23=S23*cos φср.вз.=1078,8*0,94=1014 кВт;
P36=S36*cos φср.вз.=700,2*0,94=658,2 кВт;
P65=S65*cos φср.вз.=150,8*0,94=141,75 кВт;
P14=S14*cos φср.вз.=766,2*0,94=720,2 кВт;
P45=S45*cos φср.вз.=282,2*0,94=265,3 кВт.
Определяется ток на каждом участке сети 10 кВ:
(9.5)
По определенному току рассчитывается экономическая плотность тока и принимается стандартное большее сечение кабеля. Марка кабеля – ААБ, стандартное сечение кабеля 35-240 мм2 /9/.
F21=36,7 мм2; Fст.21=50 мм2; Iдоп=140 А
F14=27,7 мм2; Fст.14=35 мм2; Iдоп=115 А
F45=10,2 мм2; Fст.45=35 мм2; Iдоп=115 А
F56=5,4 мм2; Fст.56=35 мм2; Iдоп=115 А
F63=25,3 мм2; Fст.63=35 мм2; Iдоп=115 А
F23=39 мм2; Fст.23=50 мм2; Iдоп=140 А
Производится проверка выбранных сечений кабеля в аварийных режимах: обрыв линии 1-2 или обрыв линии 2-3. Питание распределительной сети 10 кВ осуществляется от одной из двух секций шин РП-10кВ. Расчет производится аналогично расчету в нормальном режиме. Результаты расчетов снесены в таблицу 11.
Обрыв участка
№ i-го участка
Siав, кВА
Рiав, кВт
Iiав, А
Fст., мм2
Uдоп,А
Fст.принятое, мм2
1-2
2-3
2094
1968
121
50
140
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24