Коррозионные свойства титана и его сплавов

Коррозионные свойства титана и его сплавов

Министерство образования Российской Федерации

Уфимский государственный авиационный технический университет


Факультет - АТС

Кафедра  химии


РЕФЕРАТ

по дисциплине: «Физические основы коррозии»

Тема: Коррозионные свойства титана и его сплавов.

      Оценка           __________                      Выполнила: ст. гр. ФМ - 505  Каримова Л. Р. 

      Дата защиты _________                         Проверил: Попов В.И.

  






                                   Уфа - 2006 г

Содержание

Введение ………………………………………………………………………………………………………2

Общие представление о коррозии металлов…………………………………………………………………3

Поведение титана и его сплавов различных агрессивных средах………………………………………….5

Влияние легирующих элементов в титане на коррозионную стойкость ………………………………….7

Электрохимическая коррозия под действием внутренних макро – и микрогальванических пар ……….8

Особенности взаимодействия титана с воздухом ………………………………………………………….10

Взаимодействие титана с кислородом………………………………………………………………………11

Газонасыщение титановых сплавов при окислении………………………………………………………..12

Газонасыщение поверхности титанового сплава ВТ6……………………………………………………..13

Явление коррозионного растрескивания……………………………………………………………………15

Защита конструкций и машин, выполненных из титана и его сплавов, от коррозии……………………17

Список используемой литературы…………………………………………………………………………..19

 



Введение

Создание новых технологий и производств приводит к применению агрессивных сред. Использование последних ставит вопрос о конструкционных материалах, стойких к их воздействию. Большой интерес в этом плане представляют металлы подгрупп титана и ванадия. Они уже нашли применение в современном приборостроении. Так, например, они широко используются в ракетной и авиационной технике, а также при создании ядерных реакторов.

Титан и титановые сплавы широко применяются в различных отраслях промышленности, благодаря высоким значениям удельной прочности и коррозионной стойкости.

Сплав ВТ6 относится к числу первых отечественных конструкционных титановых сплавов. В таблице 1 представлен химический состав сплава ВТ6.

Таблица 1 - Химический состав титанового сплава ВТ6.

  Основные

   элементы

Al

V

     Примеси

Fe

Si

O

C

N

H

Zr

Содержание,                %

6,0

4,0

Содержание      не более, %

0,3

0,1

0,2

0,1

0,05

0,015

0,3


Титан может участвовать во многих соединениях, он химически весьма активен. И в то же время титан является одним из немногих металлов с исключительно высокой коррозионной стойкостью: он практически вечен в атмосфере воздуха, в холодной и кипящей воде, весьма стоек в морской воде, в растворах многих солей, неорганических и органических кислотах. По своей коррозионной стойкости в морской воде он превосходит все металлы, за исключением благородных – золота, платины и т. п., большинство видов нержавеющей стали, никелевые, медные и другие сплавы. В воде, во многих агрессивных средах чистый титан не подвержен коррозии. Почему же это происходит? Почему так активно, а нередко и бурно, со взрывами, реагирующий почти со всеми элементами периодической системы титан стоек к коррозии?

Общие представление о коррозии металлов

Получение металлов из их природных соединений всегда сопровождается значительной затратой энергии. Исключение составляют только металлы, встречающиеся в природе в свободном виде: золото, серебро, платина, ртуть. Энергия, затраченная на получение металлов, накапливается в них как свободная энергия Гиббса и делает их химически активными веществами, переходящими в результате взаимодействия с окружающей средой в состояние положительно заряженных ионов:

Меn++ nе ® Ме0 (G>0);                     Ме0 – ne ® Ме n+ (G <0).

                                      металлургия                                             коррозия

            Самопроизвольно протекающий процесс разрушения металлов в результате взаимодействия с окружающей средой, происходящий с выделением энергии и рассеиванием вещества (рост энтропии), называется коррозией. Коррозионные процессы протекают необратимо в соответствии со вторым началом термодинамики.

Подсчитано, что около 20% ежегодной выплавки металлов расходуется в коррозионных процессах. Большой вред приносит коррозия в машиностроении, так как из-за коррозионного разрушения какой-нибудь одной детали может выйти из строя машина, стоящая нередко десятки и сотни тысяч рублей. Коррозия снижает точность показаний приборов и стабильность их работы во времени. Незначительная коррозия электрического контакта приводит к отказу при его включении. Меры борьбы с коррозионными процессами являются актуальной задачей современной техники.

Существенно влияет на коррозионные процессы уровень внешних или внутренних (остаточных) напряжений и их распределение в металле изделия.

Химической коррозии подвержены детали и узлы машин, работающих при высоких температурах, — двигатели поршневого и турбинного типа, ракетные двигатели и т. п. Химическое сродство большинства металлов к кислороду при высоких температурах почти неограниченно, так как оксиды всех технически важных металлов способны растворяться в металлах и уходить из равновесной системы:


2Ме(т) + O2(г)           2МеО(т);

МеО(т)         [МеО] (р-р)


В этих условиях окисление всегда возможно, но наряду с растворением оксида появляется и оксидный слой на поверхности металла, который может тормозить процесс окисления.

Скорость окисления металла зависит от скорости собственно химической реакции и скорости диффузии окислителя через пленку, а поэтому защитное действие пленки тем выше, чем лучше ее сплошность и ниже диффузионная способность. Сплошность пленки, образующейся на поверхности металла, можно оценить по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла (фактор Пиллинга—Бэдвордса).

Коэффициент a (фактор Пиллинга — Бэдвордса) у разных металлов имеет разные значения и приведен в таблице 2.

Таблица 2. Значение коэффициента a для некоторых металлов

Металл

Оксид

a

Металл

Оксид

a

Mg

MgO

0.79

Zn

ZnO

1.58

Pb

PbO

1.15

Zr

ZrO2

1.60

Cd

CdO

1.27

Be

BeO

1.67

Al

Al2­O2

1.31

Cu

Cu2O

1.67

Sn

SnO2

1.33

Cu

CuO

1.74

Ni

NiO

1.52

Ti

Ti2O3

1.76

Nb

NbO

1.57

Cr

Cr2O3

2.02

Nb

Nb2O3

2.81





Металлы, у которых a<1, не могут создавать сплошные оксидные слои, и через несплошности в слое (трещины) кислород свободно проникает к поверхности металла.

Сплошные и устойчивые оксидные слои образуются при a = 1,2—1,6, но при больших значениях a пленки получаются несплошные, легко отделяющиеся от поверхности металла (железная окалина) в результате возникающих внутренних напряжений.


Поведение титана и его сплавов в различных агрессивных средах

Реакции титана со многими элементами происходят только при высоких температурах. При обычных температурах химическая активность титана чрезвычайно мала и он практически не вступает в реакции. Связано это с тем, что на свежей поверхности чистого титана, как только она образуется, очень быстро появляется инертная, хорошо срастающаяся с металлом тончайшая (в несколько ангстрем (1А=10-10м) пленка диоксида титана, предохраняющая его от дальнейшего окисления. Если даже эту пленку снять, то в любой среде, содержащей кислород или другие сильные окислители (например, в азотной или хромовой кислоте), эта пленка появляется вновь, и металл, как говорят, ею «пассивируется», т. е. защищает сам себя от дальнейшего разрушения.
Рассмотрим несколько подробнее поведение чистого титана в различных агрессивных средах: в таких, как азотная, соляная, серная, «царская водка» и другие кислоты и щелочи.

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать