Модернизация телефонной сети в сельской местности Республики Казахстан

где

Ai = μiКi - произведение весового коэффициента на величину составляющей интегрального критерия качества.

На основе выбранного критерия предлагается новая мето­дика объективной оценки качества передачи речевой информации по каналам мобильной связи, которая обладает соответствую­щим преимуществом перед субъективными (абонентскими) методами.

Учитывая, что конечным приемником речевой информации в канале связи обычно является слуховой аппарат человека, целесообразно оценивать качество передачи речи "искусствен­ным ухом", характеристики которого должны совпадать с основными характеристиками естественного уха. Согласно выбранному критерию в "искусственном ухе" должны присут­ствовать эталонные значения каждой из компонент, характе­ризующих качество передачи речи по каналам связи. Сопо­ставление реальных параметров речевого сигнала с эталонны­ми значениями в "искусственном ухе" позволяет оценивать качество с требуемой точностью. Для автоматизации процесса контроля качества передачи речевой информации "искусствен­ное ухо" должно оценивать не акустический, а электрический входной сигнал (первичный сигнал). Поэтому будем "искус­ственное ухо" называть электронным.

"Электронное ухо" представляет собой совокупность ча­стотных фильтров, усилителей, генераторов эталонных сигна­лов, компараторов, накопителей и ряда вспомогательных устройств. Необходимо, чтобы чувствительность "электронно­го уха" совпадала с чувствительностью естественного. Одной из основных характеристик естественного уха является порог слышимости. На малых уровнях совокупность слышимых тонов ограничена порогом слышимости, на больших - боле­вым порогом.

Доказано, что ухо обладает повышенной механической чувствительностью к некоторым частотным составляющим сигнала и пониженной - к другим. Подобная частотная зависимость определяется субъективно. В какой-то степени изменения порога слышимости могут быть объяснены просто изменением механической чувствительности уха. Поэтому при телефонной связи равные мощности сигнала и помехи различ­ной частоты оказывают различное влияние на качество связи вследствие частотной зависимости чувствительности уха. Следовательно чувствительность "искусственного уха" должна совпадать с чувствительностью естественного уха в частотном диапазоне канала ТЧ 0,3...3,4 кГц.

Таблица 10.1 – Частотная характеристика чувствительности уха

Частота, кГц

0,3

0,4

0,5

0,6

0,8

1,0

Чувствительность, дБ

-20

-13

-9

-4

-2

0

Частота, кГц

1,6

2,0

2,1

2,4

3,0

3,4

Чувствительность, дБ

-2

-2,5

-2,6

-3

-4

-7


В опубликованных ранее работах была исследована зави­симость чувствительности уха от частоты в децибелах относи­тельно исходного давления 2·10-5 Н/м2 или 2·10-4 мкб (1 мкб = 10-1 Н/м2. В таблице приведена частотная характери­стика чувствительности уха.

При телефонной передаче, как было сказано выше, дей­ствие отдельных составляющих спектра сигнала помехи ока­зывается неодинаковым из-за частотной зависимости чувстви­тельности уха. В соответствии с приведенными выше положе­ниями главным условием реализации предлагаемой методики является наличие устройства, обеспечивающего отличие рече­вых сигналов от отраженных сигналов и других видов шумов и измерение их энергетических характеристик на фоне мешаю­щего воздействия остальных с требуемой степенью достовер­ности. Традиционно подобные задачи решаются с помощью устройств - "детекторов речи", которые используются во многих приложениях: статистических системах уплотнения (передачи), эхоподавляющих устройствах и др. Степень до­стоверности обнаружения определяется алгоритмом распоз­навания, заложенным в детекторе речи.

Предлагаемый новый метод оценки качества передачи речевой информации, учитывающий особенности мобильной связи, позволит создать эффективное устройство контроля, обеспечивающее определение с достаточной степенью точности реального коэффициента качества и его отклонения от норма­тивного значения, в соответствии с которым вносятся корректи­вы в параметры канала связи.

Кроме основной проблемы повышения качества передачи речевой информации по каналам мобильной связи, в дальнейшем необходимо решить ряд сопутствующих задач, в частности: каким должно быть устройство контроля — индивидуальным или групповым, а также его место и способ подключения; определить структуру сигналов управления устройства контроля для изме­нения параметров канала; выбрать элементную базу его реали­зации.

Блок-схема алгоритма:

















































10.1.1 Инструкция оператору


Программа вычисления качества передачи речевого сигнала  составлена на языке программирования « Turbo Pascal 7,0»

Объём занимаемой программы памяти – 80 Kбайт

Порядок вычисления:

а) запустить программу;

б) ввести исходные данные:  Коэффициенты качества

в) вывод результатов на дисплей;

г) анализ результатов работы программы .

Используя программу, вычислим интегральный коэффициент качества арифметическим и геометрическим методами. Результат сведем в таблицу 5.2.


Таблица 5.2 – Расчет интегрального коэффициента качества

Коэффициент натуральности

5

Коэффициент разборчивости

5

Коэффициент громкости

4

Коэффициент структуры канала

4

Интегральный коэффициент качества

4.3


10.2 Анализ СМО с накоплением


10.2.1 Инструкция оператору


Программа в анализа работы СМО с очередью составлена на языке программирования « Turbo Pascal 7,0»

Объём занимаемой программы памяти – 100 Kбайт

Порядок вычисления:

а) запустить программу;

б) ввести исходные данные: 

Интенсивность потока сообщений;

Число каналов вторичной сети связи;

Максимальное число сообщений в накопителе;

Среднее время передачи одного сообщения.

в) вывод результатов на дисплей;

Используя программу, вычислим показатели работы СМО с накоплением. Результат сведем в таблицу 10.2.

Таблица 10.2 – Расчет интегрального коэффициента качества


Интенсивность потока сообщений

     8

Число каналов вторичной сети связи

     5

Максимальное число сообщений в накопителе

     6

Среднее время передачи одного сообщения

0,4

Среднее время передачи одного сообщения каждым каналом связи

0,08

Интенсивность обслуживания заявок

2,5

Нагрузка системы

3,2

Вероятность нулевого состояния СМО

0,04

Относительная пропускная способность

1

Абсолютная пропускная способность

8

Среднее число занятых каналов связи

3,2

Среднее число сообщений в накопителе

0,03

Среднее суммарное время пребывания сообщения в очереди

0,4



Блок-схема алгоритма















































11. Безопасность жизнедеятельности.


11 .1 Расчет зануления.


В электроустановках напряжением до 1 кВ с заземленной нейтралью для надежной защиты людей от поражения электрическим током применяется зануление, обеспечивающее автоматическое отключение участка сети, на котором произошел пробой на корпус. Занулением называется преднамеренное соединение металлических нетоковедущих частей электрооборудования, которые могут случайно оказаться под напряжением, с глухо-заземленным нулевым проводом трансформатора или генератора в сетях трехфазного тока, с глухо-заземленным выводом источника однофазного тока, с глухо-заземленной средней точкой источника в сетях постоянного тока через сопротивление повторного заземления Рп.

Расчет зануления сводится к определению условий, при которых обеспечиваются быстрое срабатывание максимально-токовой защиты и отключение поврежденной, установки от сети. Если сопротивление нулевого провода больше сопротивления фазного не более чем в 2 раза, то условия срабатывания максимально-токовой защиты почти всегда удовлетворяются. Исключением могут быть случаи электроснабжения по воздушным линиям, имеющим значительные реактивные сопротивления.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать