Мореходные качества судна "Андрей Бубнов"

Если возмущающая сила приложена однократно, то колебательный процесс под действием сопротивления быстро затухает. Амплитуда максимального отклонения зависит от значения приложенной силы и характеристик судна, а частота или период качки — только от ха­рактеристик судна. Поэтому такие колебания называют собственными, или свободными.

Наиболее важным параметром качки является частота, которая при совпадении с частотами действующих сил может привести к резо­нансным колебаниям и значительному, иногда многократному, увеличе­нию амплитуды. Обеспечение плавания без попадания в условия резо­нансных колебаний возлагается на судоводителя. При отсутствии рас­четных данных с достаточной точностью период свободной бортовой качки может быть определен по формулe


tq = Kk (B/h1/2m) (1)


где Kk — размерный коэффициент (принимают Kk = 0,83-:-0,86 с/м для пассажирских судов, 0,75-:-0,85 с/м для грузовых судов и 0,62-:-0,72 с/м для буксиров; большие значения коэффициента относятся к порожнему судну, меньшие — к груженому);

В — ширина судна, м;

hm — малая метацентрическая высота, м.

Из формулы (1) видно, что чем меньше метацентрическая высота, тем больше период качки, а следовательно, плавнее качка. Поэтому в процессе проектирования и эксплуатации судна стремятся к тому, что­бы его метацентрическая высота имела минимальное значение, обе­спечивающее безопасность мореплавания.

Периоды свободной килевой и вертикальной качки одинаковы и приближенно могут быть определены:


ty = tверт – (2,7-:-3)Т


где Т — осадка судна, м.

Связь между периодом бортовой качки и метацентрической высотой позволяет заметить, что при увеличении остойчивости (hm возрастает) снижается плавность качки (tq убывает), т. е. возрастает частота коле­баний w.

На волнении повторяемость возмущающих сил (встреча с волной) оказывается регулярной, что может привести к резонансным колеба­ниям. Частота встречи с волной зависит от скорости судна и волны, угла их встречи. Если считать, что судно идет к направлению распро­странения волн под углом , то относительная скорость встречи


c' = vcos j ± cB, (2)


где v — скорость судна, м/с;

сB — скорость распространения волны, м/с (знак плюс соответствует встречной волне, минус — попутной).

Частота встречи (частота возмущающей силы) соответствует отно­шению длины волны к относительной скорости встречи, т. е.


tB = lB/ c'


Длина волны lB определяется расстоянием между двумя соседними вершинами или подошвами волн. Высота волны определяется по верти­кали от нижней точки ее впадины (подошвы) до высшей точки вершины (гребня). Период волны tB определяется временем, в течение которого две соседние волны проходят через одну неподвижную точку простран­ства. Приближенно скорость распространения волны


св=1,25 l1/2B.


Тогда кажущийся период волны


tB = lB / (vcos j ± 1,25 l1/2B). (3)


Судоводитель должен сопоставить период собственных колебаний судна [формулы (1) и (2)] с вынужденными колебаниями —(3). Для обеспечения безопасности движения различие между ними долж­но быть не менее 20 %. Как видно из выражения (3), частоту возму­щающей силы можно изменить изменением скорости судна и угла встречи с волной.

На практике безопасную скорость судна и курсо­вой угол часто выбирают с помощью специальных диаграмм Ремеза, Власова и других.

Влияние качки учитывают главным образом при нормировании мореходных качеств. В нормировании остойчивости качка учитывается при определении допускаемых моментов, а для судов класса М-СП и при нормировании отно­сительного ускорения при борто­вой качке, которое соответствует удовлетворительной обитаемости. Сводится это к тому, чтобы уско­рение, испытываемое человеком, не превышало значения, равного од­ной десятой части ускорения сво­бодного падения (0,lg). Если это требование не удовлетворяется, то на судне следует выполнить меро­приятия, снижающие амплитуду бортовой качки.


 

Рис. 12. Возникновение сил на ску­ловых килях при качке


Наиболее простым средством являются скуловые кили — пласти­ны, установленные на скуловом поясе перпендикулярно обшивке (рис. 12). Протяженность их соот­ветствует длине цилиндрической вставки, ширина — габаритам шпангоута. При действии возму­щающего момента Мв скуловые ки­ли создают момент сопротивления силам Р. Применяют также актив­ные скуловые кили (бортовые ру­ли, стабилизирующие качку).


Рис. 13. Цистерны для успокоения качки:

/ — свободное пространство цистерн; 2, 4 — соответственно воздушный и водяной соединительные каналы; 3 — система кла­панов


Существуют и другие виды гасителей колебаний, к которым отно­сятся пассивные успокоительные цистерны, представляющие собой бор­товые цистерны, соединенные воздушным каналом сверху и водяным снизу (рис. 13). Каналы снабжены системой клапанов, обеспечивающих перетекание жидкости при крене. Сопротивление воздуха, силы инерции и трения тормозят перетекание жидкости в такой мере, что период перетекания оказывается равным периоду качки суд­на и отстает по фазе от колебаний судна на 90° и колебаний вол­ны на 180°. Таким образом, жидкость перекает в сторону подни­мающегося борта и ее масса создает момент, успокаивающий качку судна. При режимах качки, близких к резонансу, цистерны уменьшают амплитуды качки примерно вдвое. Если жидкость перемещается насосами, то такие успокоительные цистерны счи­таются активными.

Наиболее сложным и дорогостоящим является применение гиро­скопических успокоителей. Тяжелый диск (гироскоп) успокоителя вра­щается с большой скоростью вокруг оси, соединенной с рамой. Ось качания рамы расположена горизонтально в поперечной плоскости судна и специальными цапфами соединена с его корпусом. При кач­ке судна и вращении гироскопа возникает сложное движение рамы — прецессия, приводящая к появлению в цапфах реакций, создающих стабилизирующий момент.


4.1                                                     Расчет амплитуды качки


Амплитуда качки судна рассчитывается по формуле

 


                           qr = 109k*x1*x2*    r*S


где k – коэффициент учитывающий влияние скуловых килей, k = 1 (скуловые кили отсутствуют).

x1 – безразмерный множитель, зависящий от отношения ширины судна к осадке (В/d):


B/d = 13/3,63 = 3,58 по табл. 2.1.3.1-1[3] x1 = 0,79


x2 – безразмерный множитель, зависит от коэффициента полноты сВ


где сВ = V/LBT = D/gLBT = 4460/1,025*110*13*3,63 = 0,84


по табл. 2.1.3.1-2[3] для сВ > 0,7 x2 = 1,0


r – параметр определяемый по формуле:


r = 0,73 * 0,6(zq – d)/d = 0,73 + 0,6 ((3,51 -3,63)/3,63) = 0,71


S – безразмерный множитель, зависит от района плавания и периода качки Т

 


Т = 2сВ/   h

 

где с = 0,373 + 0,023 В/d – 0,043 L/100 = 0,373 + 0,023(13/3,63) -0,043* *(110/100) = 0,408

 


 Т = 2 * 0,408 *13/   2,26 = 7,07


по табл. 2.1.3.1-3[3] для Т = 7,07 S = 0,098 при неограниченном районе плавания.

 


 qr = 109 * 1 *0,79 *1 * 0,71* 0,098 = 22,7o


T = 7,07

qr = 22,7o


4.2.                          Определение опрокидывающего момента с учетом бортовой

качки.


На диаграмме динамической остойчивости (рис.8) вправо начала координат откладываем r – амплитуду качки динамической остойчивости в точке А1


Через точку А1 проводим прямую, перпендикулярную оси абсцисс и на ней откладываем отрезок АА1 = 2 qr..


Полученная точка А будет начальной для кривой динамической остойчивости.


Из начала (точка А) проводим касательную к диаграмме динамической остойчивости. Отрезок АА1 продлеваем до пересечения с вертикалью из точки на абсциссе 1 рад (57,3о).


Эта вертикаль пересекается с касательной к кривой в точке В. Отрезок ВС равен плечу опрокидывающего момента ВС.


 ВС = 0,85 м lqопр = 0,85 м


Определим опрокидывающий момент с учетом качки:


 Мопрmin = D* lqопр = 4460*0,85 = 3790 нм


 Мопрmax =D* lqопр*q = 4460*0,85*9,8 = 37800 нм



4.3. Особенности плавания в штормовую погоду.


Конструкция современных морских судов обеспечивает большую проч­ность, надежную работу судовых ме­ханизмов и хорошие мореходные ка­чества. Однако плавание и управле­ние судном в шторм остаются слож­ной задачей. Обеспечение безава­рийного плавания в этот период тре­бует большого напряжения в работе всего экипажа, особенно судоводите­лей, четких знаний, умения и созна­тельной дисциплины.

Основные факторы, действующие на судно во время шторма — ветер и волнение. Ветер оказывает влияние на судно в зависимости от конструктивных особенностей. При развитых надстройках, избыточном надводном борте, небольшой осадке увеличи­ваются крен и дрейф судна. Ветер встречных направлений увеличивает сопротивление движению судна, ухудшает его управляемость. Если курс проходит вблизи берега, отме­лей, рифов, то дрейф в их сторону во время плавания становится опас­ным.

Главную опасность для судна во время шторма представляют волнение, вызывающее качку, напряжение в корпусе и удары волн. Сильная бортовая качка создает большие динамические нагрузки на корпус и судовые механизмы. В результате этого могут появиться деформации и тре­щины в наружной обшивке корпуса и в палубах. Возникающие инерционные силы могут явиться причиной сдвига с фундаментов механизмов и устройств, смещения груза; удары волн и качка ухудшают управляемость, снижают скорость судна; рулевая машина работает с большой нагрузкой из-за частных перекладок руля.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать