Основы метрологии

0,02/0,01 - для приборов, у которых измеряемая величина не может отличаться от значения х, показанного указателем, больше, чем на [C + d×

(|Хк ¤х| - 1)]%, где С и d - числитель и знаменатель соответственно в обозначении класса точности; Хк – бо'льший (по модулю) из пределов измерений прибора. Примеры обозначения классов точности приведены на рис. 3.2.


3.4.6. Метрологическая надёжность средств измерения

В процессе эксплуатации любого средства измерения может возникнуть неисправность или поломка, называемые отказом.

Рис. 3 .2. Лицевые панели приборов: а – вольтметра класса точности 0,5 с равномерной шкалой; б– амперметра класса точности 1,5

 с равномерной шкалой;  в – амперметра класса точности 0,02/0,01 с равномерной шкалой;  г - мегаомметра класса точности           с неравномерной шкалой


 
Метрологическая надёжность - это свойство средств измерений сохранять установленные значения метрологических характеристик в

течение определённого времени при нормальных режимах и рабочих условиях эксплуатации. Она характеризуется интенсивностью отказов, вероятностью безотказной работы и наработкой на отказ.

Интенсивность отказов определяется выражением

 ,

где L - число отказов; N - число однотипных элементов; Dt - промежуток времени.

Для средства измерения, состоящего из n типов элементов, интенсивность отказов

,

где mi - количество элементов i-го типа.

Вероятность безотказной работы .

Наработка на отказ  .

Для внезапного отказа, интенсивность отказов которого не зависит от времени работы средства измерения,

Lсум(t) = Lсум = const; P(t) = exp(-Lсум×t); Tср = L/Lсум .

Межповерочный интервал, в течение которого обеспечивается заданная вероятность безотказной работы, определяется по формуле

 ,

где Рмо - вероятность метрологического отказа за время между поверками;

 Р(t) - вероятность безотказной работы.

В процессе эксплуатации может производиться корректировка межповерочного интервала.


3.4.7. Метрологическая аттестация средств измерений

Под метрологической аттестацией понимают исследование средства измерений, выполняемое метрологическим органом с целью определения его метрологических свойств и выдачи соответствующего документа с указанием полученных данных.

По результатам метрологической аттестации средству измерений приписываются определённые метрологические характеристики, определяется возможность применения его в качестве образцового или рабочего средства измерений. В настоящее время под метрологической аттестацией обычно понимают всестороннее исследование образцовых или нестандартных средств измерений, а также стандартных образцов состава и свойств веществ и материалов.

Нестандартные средства измерений (НСИ). Установлен порядок метрологического обеспечения эксплуатации нестандартных средств измерений, который распространяется также на:

ввозимые из-за границы единичными экземплярами;

единичные экземпляры серийных средств измерений, отличающиеся от условий, для которых нормированы их метрологические характеристики;

серийно выпускаемые образцы, в схему и конструкцию которых внесены изменения, влияющие на их метрологические характеристики.

Нестандартными могут быть как рабочие, так и образцовые средства измерений.

Задачами метрологического обеспечения НСИ являются:

1. Исследование метрологических характеристик и установление соответствия НСИ требованиям технических заданий, либо паспорту (проекту) завода изготовителя.

2. Установление рациональной номенклатуры НСИ.

3. Обеспечение НСИ средствами аттестации, поверки (НТД по поверке) при их разработке, изготовлении и эксплуатации.

4. Обеспечение постоянной пригодности НСИ к применению по назначению с нормированной для них точностью.

5. Сокращение сроков и снижение затрат на разработку, изготовление и эксплуатацию.

Научно-методическое руководство деятельностью предприятий по метрологическому обеспечению НСИ осуществляют головные и базовые организации метрологической службы министерств (ведомств), метрологические институты, центры стандартизации и метрологии Госстандарта России.

Вновь разработанные или закупленные по импорту НСИ допускаются к применению только после их метрологической аттестации. Если существует договор о взаимном признании результатов аттестации средств измерений со страной, из которой импорируется НСИ, то аттестация в России может не проводиться.

За разработкой, изготовлением и эксплуатацией НСИ ведётся авторский и государственный (в сферах распространения государственного метрологического контроля и надзора) надзор , а также ведомственный конт-роль.

Авторский контроль осуществляется разработчиком НСИ совместно с метрологической службой разработчика. Он предусматривает участие в подготовке и проведении метрологической аттестации НСИ, оказание помощи при разработке нормативно-технической документации и организации поверки НСИ.

Ведомственный метрологический контроль за разработкой, изготов-лением, аттестацией и поверкой НСИ проводится метрологическими службами министерства (ведомства).


3.5. Погрешность измерений


Погрешность измерений - это отклонение значений величины, найденной путём её измерения, от истинного (действительного) значения измеряемой величины.

Погрешность прибора - это разность между показанием прибора и истинным (действительным) значением измеряемой величины.

Разница между погрешностью измерения и погрешностью прибора заключается в том, что погрешность прибора связана с определёнными условиями его поверки.

Погрешность может быть абсолютной и относительной.

Абсолютной называют погрешность измерения, выраженную в тех же единицах, что и измеряемая величина. Например, 0,4В, 2,5мкм и т. д. Абсолютная погрешность

D = А – Хист » А – Хд,

где А - результат измерения; Xист - истинное значение измеряемой величины; Xд - действительное значение измеряемой величины.

Относительная погрешность измерения представляет собой отношение абсолютной погрешности измерения к истинному (действительному) значению измеряемой величины и выражается в процентах или долях измеряемой величины:

.

В зависимости от условий измерения погрешности подразделяются на статические и динамические.

Статической называют погрешность, не зависящую от скорости изменения измеряемой величины во времени.

Динамической называют погрешность, зависящую от скорости изменения измеряемой величины во времени. Возникновение динамичесой погрешности обусловлено инерционностью элементов измерительной цепи средства измерений. Динамической погрешностью средства измерений является разность между погрешностью средства измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени.


3.5.1. Систематические и случайные погрешности

Систематической погрешностью называется погрешность, остающаяся постоянной или закономерно изменяющейся во времени при повторных измерениях одной и той же величины.

Примером систематической погрешности, закономерно изменяющейся во времени, может служить смещение настройки прибора во времени.

Случайной погрешностью измерения называется погрешность, которая при многократном измерении одного и того же значения не остаётся постоянной. Например, при измерении валика одним и тем же прибором в одном и том же сечении получаются различные значения измеренной величины.

Систематические и случайные погрешности чаще всего появляются одновременно.

Для выявления систематической погрешности производят многократные измерения образцовой меры и по полученным результатам определяют среднее значение размера. Отклонение среднего значения от размера образцовой меры характеризует систематическую погрешность. которую называют "средней арифметической погрешностью", или "средним арифметическим отклонением".

Систематическая погрешность всегда имеет знак отклонения, т.е. "+" или "-". Систематическая погрешность может быть исключена введением поправки.

При подготовке к точным измерениям необходимо убедиться в отсутствии постоянной систематической погрешности в данном ряду измерений. Для этого нужно повторить измерения, применив при этом уже другие средства измерения. По возможности нужно изменить и общую обстановку опыта - производить его в другом помещении, в другое время суток.

Прогрессивные и периодические систематические погрешности в противоположность постоянным можно обнаружить при многократных измерениях.

Обработка данных и оценка параметров случайных погрешностей производится методами математической статистики, изложенными в [42, 50].

При расчёте предельной погрешности измерения определяют числовое значение погрешности измерения от всех составляющих и производят суммирование:

,

где знаки "+" или "-" ставятся из условия, чтобы систематические и случайные погрешности суммировались по модулю.

Если в случайной погрешности известно среднее квадратическое отклонение, то

 ,

где К - показатель, указывающий доверительные границы для предельной случайной погрешности измерения (при К=1 р=0,65; при К=2 р=0,945; при К=3 р=0,9973).

Если результаты измерений зависят от большого числа разнообразных факторов, то

y = F(x1, x2, …..xn) ,

где xi - переменные функциональные параметры.

Каждый параметр может иметь отклонение Dxi (погрешность) от предписанного значения xi. Поскольку погрешность Dxi мала по сравнению с величиной xi, суммарная погрешность Dy функции y можно вычислять по формуле , (3.1)

где ¶y/¶xi - передаточное отношение (коэффициент влияния) параметра xi.

Формула (3.1) справедлива лишь для систематических погрешностей Dxi.

Для случайных погрешностей (когда отдельные составляющие не всегда принимают предельные значения) используются теоремы теории вероятностей о дисперсии, то есть

 . (3.2)

Суммарная погрешность при наличии только случайных составляющих dxi погрешностей

,

где m - число попарно корреляционно связанных параметров;

 ki и kj - коэффициенты относительного рассеяния, характеризующие степень отличия закона распределения погрешности данного параметра от нормального;

 rij - коэффициент корреляции, существующий при наличии корреляционной связи между параметрами xi и xj.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать