Особенности фазовых превращений в бинарных смесях

     (33)

и внутри ее не выполнены ни условие устойчивости по отношению к диф­фузии, ни условие механической устойчивости. Эта кривая не принимает участия в определении критической точки смеси. Очевидно, наконец, что при приближении к чистому веществу А спинодаль и кривая, определяемая уравнением (33), сближаются друг с другом, что находится в соот­ветствии с уравнениями (30) — (32).


3. РАССЛАИВАНИЕ В РЕГУЛЯРНЫХ РАСТВОРАХ


Для того чтобы прийти к более кон­кретным заключениям, необходимо знать зависимость коэффициентов ак­тивности от независимых переменных Т, р и х2.

Мы рассмотрим случай, при котором коэффициенты активности γ1и γ2 определяются соотношениями

      (34)

где α — постоянная величина,

αi – активность компонента i,

xiмольная доля компонента,

γi – коэффициент активности,

 Как будет показано ниже, такая зависимость коэффициентов активности от состава и температуры характерна для клас­са растворов, называемых строго регулярными растворами и исследован­ных в частности Гильдебрандом и Фаулером и Гуггенгеймом.

Физический смысл (34) будет рассмотрен ниже, пока же мы можем выяснить, к каким результатам приводит применение условий устойчиво­сти в данном частном случае. Аналогичные расчеты можно произвести, исходя из любых других уравнений для коэффициентов активности, уста­новленных экспериментально или выведенных теоретически.

При выполнении (34) с учетом что

 ,

где  - стандартный химический потенциал компонента i,

 - химический потенциал компонента i в чистом состоянии.

тогда химические потенциалы имеют форму

         (35)

      (36)

где функции  и  по определению равны химическим по­тенциалам чистых компонентов 1 и 2, находящихся в том же физическом состоянии, что и в растворе. Поэтому если система распадается на две

фазы, то   имеет одно и то же значение в обоих слоях, и это   же   справедливо по отношению .

Дифференцируя (35), получим

       (37)

Для того чтобы система находилась в равновесном состоянии, устой­чивом по отношению к разделению на две фазы, в соответствии с

    

необходимо и достаточно, чтобы

        (38)

Если величина  положительна и достаточно велика, то это нера­венство не может выполняться при всех концентрациях. Поскольку макси­мальным значением х2(1- х2) является 0,25, минимальное значение  равно 4. Поэтому для всех значений  должна существовать область концентраций, в которой (38) не выполняется. В этой области система уже не находится в состоянии устойчивого равно­весия и распадается на две фазы.

Прежде всего, используя уравнения (2), можно рассчитать поло­жение критической точки при данном давлении р. Если Тс и (x2)c — соот­ветственно критическая температура и критический состав, то

       (39)

         (40)

Откуда

                (41)

Итак, уравнения (34) для коэффициентов активности приводят к критической точке, соответствующей эквимолекулярной смеси двух ком­понентов. Кроме того, в этом случае мы всегда имеем дело с верхней кри­тической температурой растворения, так как при Т > Тс неравенство (38) всегда выполняется и фаза является устойчивой, независимо от ее состава.

Найдем теперь границу, отделяющую метастабильные состояния от неустойчивых. В соответствии с (6) и (37) уравнением этой грани­цы является

     (42)

или, после сочетания с (41),

       (43)

 Риг.11. -Диаграмма двойной смеси   вблизи   критической точки.




Рис.12. Расслоение   фаз   в регулярном растворе при посто­янном р.

Наконец, нам необходимо знать кривую сосуществования двух слоев в истинном равновесии. На этой кривой должны выполняться условия

   и            (44)

или (см. (35) и (36))

      (45)

Функции  взаимно уничтожаются, и если   т. е. если кривая симметрична, уравнения (45) становятся тождествен­ными. Поэтому два уравнения (45) эквивалентны одному независимо­му уравнению. Выбирая первое из этих уравнений и исключая , полу­чим

      (46)

 откуда (см.  (41))

            (47)

Положение критической точки и кривых (43) и (47) схематиче­ски изображено на рис.12.


4. ФАЗОВЫЕ ПЕРЕХОДЫ СМАЧИВАНИЯ И ПРЕДСМАЧИВАНИЯ В БИНАРНОЙ СИСТЕМЕ (МЕТАНОЛ-ГЕПТАН)


Фазовые переходы расслаивания в бинарных жидких смесях с ограниченной растворимостью сопровождаются возникновением поверхностных фаз и поверхностными фазовыми переходами. Вблизи критической температуры смешения поверхностное натяжение между жидкими фазами α и β стремится к нулю  и появляются условия

для поверхностных переходов, в частности, становится возможным образование смачивающего слоя одной из фаз, например фазы β, макроскопической толщины на межфазной поверхности αγ, если выполняется условие для межфазных натяжений , где γ – паровая или твердая фаза (стенки кюветы). Частным случаем являются переходы Канна между смачиванием и несмачиванием межфазной поверхности αγ фазой β, когда смачивающая фаза устойчива в объеме (переход полного смачивания) или когда бинарная система однородна и одна из фаз (например, β) только зарождается (переход предсмачивания). На фазовой диаграмме (рис.13) область переходов полного смачивания находится на отрезке DB кривой сосуществования (KC).

Рис.13. Фазовая диаграмма бинарной системы с линией переходов предсмачивания: ADBC – кривая сосуществования для объемных фаз,

DF – линия перехода предсмачивания,

1 и 2 – линии большой и малой адсорбции соответственно,

Тс – критическая температура смешения в объеме,

Тω – температура перехода полного смачивания,

ТSC – поверхностная критическая температура.

Линия фазовых переходов предсмачивания, называемых также переходами тонкий – толстый слой, изображается отрезком DF, при пересечении ее системой справа налево толстый слой зарождающейся фазы β изменяет структуру и становится тонким. Экспериментально было обнаружено несколько бинарных систем, но долгое время не удавалось экспериментально подтвердить существование перехода предсмачивания, сейчас уже имеется несколько работ на эту тему. Рассмотрим переход полного смачивания в системе метанол-гептан на границе со стенкой кюветы. Был разработан метод выявления перехода предсмачивания на этой межфазной границе, что позволяло определить расположение линии переходов предсмачивания относительно KC.

 Измерения проводились методом предельного угла на модифицированном рефрактометре Пульфриха у вертикальной стенки кюветы (рис.14). Бинарная система метанол-гептан критической концентрации помещалась в запаянную цилиндрическую кювету из молибденового стекла диаметром ~ 4см. Торцевые окна – полированные оптические пластинки толщиной 1,5мм. – изготовлялись из того же стекла и припаивались к торцам цилиндра. Кюветы заполнялась на ¾ объема. К плоскому торцевому окну кюветы с помощью иммерсионной жидкости прикреплялся измерительный стеклянный кубик.

 


Рис.14. Устройство для измерения пристеночных значений показателя преломления: 1 – цилиндрическая кювета из стекла, 2 – бинарная смесь, 3 – измерительный кубик с показателем преломления N, 4 – световой луч, 5’ и 5” – лучи, выходящие из верхней и нижней фазы соответственно.  


Световой луч от натриевой лампы (λ = 589,9 нм) падает в кювету вертикально вдоль окна, проходит через верхнюю и нижнюю фазы, преломляясь на границе с кубиком под соответствующими предельными углами. Преломленные лучи выходят из кубика через нижнюю горизонтальную грань. Здесь луч попадает в зрительную трубу  рефрактометра, угол выхода луча определяется по лимбу прибора. Отсчет нулевого угла производится по отражению от внешней вертикальной грани кубика с использованием автоколлимационной системы прибора. Кювета с бинарной смесью помещается в массивный латунный блок, по которому циркулирует вода из термостата. Блок укрепляется на месте кюветы в рефрактометре. Преломленные лучи выходят из кубика под углами φi и наблюдаются в виде ярких линий в поле зрения окуляра.

Показатели преломления соответствующих фаз определялись по формуле  , где N – показатель преломления измерительного кубика.

Измерения проводились при двух температурных режимах. При режиме 1 осуществлялось ступенчатое нагревание образца от 20 оС до критической температуры (Тс = 52,9 оС). При каждой температуре образец длительно термостатировался, после этого смесь перемешивалась путем встряхивания, и затем измерялся показатель преломления. Следующее измерение проводилось при большей температуре. При режиме 2 образец предварительно нагревался  до температуры выше критической, перемешивался до однородного состояния и затем ступенчатым образом охлаждался с термостатированием в точках наблюдения. В режиме 2 встряхивание перед измерением не требовалось, так как система сама достигает равновесного состояния. 

При температурном режиме 1 было замечено (рис.15) скачкообразное изменение свойств системы в узком интервале температур: от 44,2 до 44,3 оС, состоящее в исчезновении сигнала от верхней фазы.

Вся кривая температурной зависимости показателя преломления (ПП) может быть условно разделена на несколько областей. В области низких температур (20-44,2 оС) наблюдаются сигналы от обеих фаз. Вторая область (44,3-47,2 оС)начинается с исчезновения сигнала от верхней фазы в интервале 44,3-44,9 оС, она включает область нестабильности: заметен значительный разброс точек, при некоторых значениях температуры появляется сигнал от верхней фазы, который не воспроизводится при повторных измерениях.

Рис.15. Зависимость показателя преломления сосуществующих фаз системы метанол-гептан от температуры (ветвь 1 – верхняя фаза, обогащенная гептаном, ветвь 2 – нижняя фаза, обогащенная метанолом). Темные значки – пристеночные значения (температурный режим 1), светлые значки и сплошная линия – объемные значения, измеренные по другой методике.


При температурах 47,1-52,9 оС хорошо видны два сигнала от обеих фаз. В окрестности температуры скачкообразного изменения свойств системы (44,3 оС) сигналы от каждой из обеих фаз представляются в виде нескольких линий (кратные линии). На рис.15 эти точки соединены отрезком прямой. При температурном режиме 2 результаты, относящиеся к нижней фазе (здесь не приведены), сходны с данными, полученными в режиме 1, особенно при низких температурах. Имеются и различия. Так, область устойчивого существования двух сигналов вблизи критической температуры при режиме 2 значительно меньше: 50-52,9 оС. Кроме того, при температурах ниже 50 оС сигнала от верхней фазы, как правило, нет, появляющиеся линии трактовались как нестабильные. Сигнал отсутствует даже после охлаждения до 20 оС. Только через сутки можно было видеть снова два сигнала при комнатной температуре.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать