Распределение напряжений по длине трубы для средней части является практически равномерным. При таком высоком уровне растягивающих напряжений возможно разрушение арматуры в окружном направлении. Предположим, что в силу каких-то случайных факторов первым разрушится конечный элемент номер 1065, образованный узлами 361 и 362, Удаляем этот элемент из сетки КЭ и проводим расчет для новой сетки при том же уровне внутреннего давления (120 МПа). Удаление элемента 1065 моделирует возникновение концентратора напряжений в окрестности первой точки разрушения окружной арматуры. Наличие такого концентратора приводит к резкому росту напряжений (до 760 МПа) в соседних 1049 и 1081.
На следующем этапе расчета удаляем из сетки КЭ три элемента - 1049, 1065, 1081. Это приводит к росту напряжений в КЭ с номерами 1033, 1097 до 1034 МПа. При этом напряжения по Мизесу в узлах 361-362, принадлежащих оболочечным КЭ возрастет до 15.6 МПа
Проведенный анализ напряженно-деформированного состояния металлопластовой трубы для рассмотренных вариантов сетки КЭ позволяет сцепить вывод о том, что основной несущий элемент - окружная арматура полностью исчерпывает свою несущую способность, после чего происходит перераспределение внутренних усилий меледу арматурой и полиэтиленовой матрицей и при достижении в полиэтиленовых оболочечных элементах разрушающего напряжения по Мизесу происходит окончательное разрушение МПТ.
Разрушение
трубы происходит с образованием продольной трещины. Визуальный осмотр
внутренней поверхности разрушенной трубы показал, что она имеет форму
многогранника с шириной грани, равной шагу продольной арматуры, т.е. имеет
место ярко выраженная деформация смятия полиэтиленовой
матрицы.
Для исследования напряжений в зоне контакта арматуры с полиэтиленом было использовано решение контактной задачи Герца.
Максимальное давление в зоне контакта определяется по формуле:
,
где R1 и R2 – радиусы кривизны контактирующих тел; R1 =5,9 см; R2 = 0,15 см;
,
где Е1 и Е2 – модули упругости; Е1 = 800 МПа; Е2 = 2,1*105 МПа;
v1 и v2 – коэффициенты Пуассона; v1 = 0,4; v2 = 0,3;
,
где g – интенсивность погонной нагрузки; p – внутреннее давление в трубе; Δ – шаг арматуры (Δ = 6 мм).
При внутреннем давлении 12 МПа получили Рmax = 118,8 МПа.
Главные напряжения в зоне контакта:
Эквивалентные напряжения по Мизесу:
Для полиэтилена низкого давления предел текучести равен 20 МПа. Полученный уровень напряжений говорит о том, что в зоне контакта происходит местная пластическая деформация, результатом которой становится смятие полиэтиленовой оболочки. При внутреннем давлении р = 4 МПa σэкв = 13,7 MПa.
Контактная задача Герца описывает напряжения на границе “полиэтилен-сталь” приблизительно, так как, в данном случае, непосредственно рассматривалась только зона контакта двух элементов (полиэтиленового и стального) без учета роботы соседних элементов.
Поэтому для анализа напряженно-деформированного состояния в зонах контакта стальной арматуры с полиэтиленом была смоделирована другая сетка конечных элементов (рис. 31 и 32). Для достижения большей точности решения в зонах контакта использована более мелкая сетка. Задача решалась в плоской постановке.
Были рассмотрены два сечения металлопластовой трубы. Сечение 1 проходит между двумя смежными проволоками окружной арматуры. Сечение 2 включает в себя окружную и продольную арматуру. Рассматривалась металлопластовая труба наружного диаметра 95 мм под действием внутреннего давления 4.0 МПа. Был рассмотрен фрагмент трубы, включающий в себя 5 проволок продольной арматуры (d = 2.5 мм). В силу симметрии относительно вертикальной оси сеткa КЭ формировалась для половины фрагмента. Для узлов, лежащих на оси симметрии, горизонтальные перемещения принимались равными кулю.
Распределение эквивалентных напряжений Мизеса 1 и 2 показано на рис. 33 и 34. Для сечения 1 напряжения в полиэтилене в окрестности узла 258 не превышают 5 МПа. Для сечения 2 в узде 258 напряжение равно 5.07 МПа. Такой уровень напряжений обеспечивает четырехкратный запас кратковременной прочности.
Как указывалось выше, наиболее наряженным элементом конструкции оказалась арматура в окружном направлении. Шаг Δ1 армирующей сетки в окружном направлении несущественно влияет на напряженно-деформированное состояние трубы и может задаваться из конструктивных соображений.
Наиболее
существенное влияние оказывает шаг Δ2 арматуры в продольном
направлении. Для трубы диаметром 95 мм изменение шага сетки в продольном
направлении с 8 до 6 мм привело к понижению растягивающих напряжений в
кольцевой арматуре примерно на 20 %.
В процессе изготовления МПТ при отверждении ПНД с 70 до 20°С в трубе возникают термоупругие напряжения. В арматуре термоупругие напряжения – сжимающие, в полиэтиленовой матрице – растягивающие. От действия внутреннего давления и в арматуре и в полиэтиленовой матрице возникают растягивающие напряжения. Таким образом, наличие термоупругих напряжений разгружает арматуру и повышает суммарные напряжения в полиэтилене. С целью снижения уровня напряжений в полимерной матрице и повышения работоспособности труб целесообразно в технологию изготовления внесли операцию термообработки тела трубы.
Результаты испытания на растяжение элементов сварного проволочного каркаса металлопластовой трубы из малоуглеродистой конструкционной стали показали уровень предела текучести σт = 310 МПа. Сопоставление с напряжениями в стальной арматуре (табл. 111) показывает, что для труб диаметром 89 и 95 мм можно использовать проволоку диаметром 2,5 мм при размерах ячейки до 8 х 8 мм. Трубы диаметром 115 и 132 мм позволяют использовал проволоку диаметром 3 мм при размерах ячейки до 8 x 8 мм. При использовании проволоки диаметром 2,5 мм для трубы диаметром 115 мм размеры ячейки не должны превышать 6 х 6 мм, для трубы диаметром 132 мм размеры ячейки не должны превышать 6 x 6 мм.
Проведен расчет геометрических параметров полиэтиленовой законцовки металлопластовой трубы.
Определение длины законцовки из термопласта.
Расчет ведется на срез по границе "законцовка – тело трубы".
Подставив эти значения, получим:
откуда:
где h – шаг расположения продольных проволок;
δ – толщина стенки трубы.
Расчет длины законцовки из условия равенства прочности тела трубы на разрыв и прочности точечной сварки проволок между собой.
Подставив эти значения, получим:
По результатам расчета принимается наибольшая величина длины законцовок.
Определениe толщины законцовок.
Расчет ведется на смятие выступа полиэтиленовой законцовки.
Подставив значения, получим:
Решая это квадратное уравнение, получим значение толщины законцовки и ее наружного диаметра.
7. РАСЧЕТ ПРОЫСЛОВОГО ТРУБОПРОВОДА ИЗ СТАЛЬНЫХ ТУБ И ТРУБОПРОВОДА ИЗ ГПМТ
Исходные данные:
Внутренний диаметр dвн = 190 мм;
длина трубопровода L = 2000 м;
часовая пропускная способность Qч = 200 м3/ч;
плотность перекачиваемой нефти ρ = 870 кг/м3;
кмнематическая вязкость нефти vt = 0.994*10-4 м2/с.
7.1. Расчет трубопровода из стальных труб
Секундный расход нефти в трубопроводе:
Средняя скорость нефти в трубопроводе:
Режим движения потока в трубопроводе характеризуется числом Рейнольдса:
,
получаем режим движения нефти в трубопроводе – турбулентный.
Для определения зоны трения необходимо определить переходные числа Рейнольдса:
,
где ε = Kэ/d – относительная шероховатость труб, выраженная через эквивалентную шероховатость Kэ и диаметр.
зона смешанного трения:
Коэффициент гидравлического сопротивления в этом случае определяется по формуле Альтшуля:
Потери напора на трение в трубе круглого сечения определяют по формуле Дарси-Вейсбаха:
,
если перевести полученный результат в потери давления, то получим:
7.2. Расчет трубопровода из ГПМТ
Эквивалентная шероховатость ГПМТ примерно на 30 % ниже, чем у стальных труб, и составляет Кэ = 0,3.
Тогда:
получаем зону гидравлически гладких труб:
Коэффициент гидравлического сопротивления в этом случае определяется по формуле Блазиуса:
Тогда потери напора на трение:
,
если перевести полученный результат в потери давления, то получим:
Следовательно, можно сделать вывод о том, что при применении ГПМТ вместо стальных труб за счет меньшей эквивалентной шероховатости труб уменьшается коэффициент гидравлического сопротивления трубопровода, а также уменьшаются потери напора на трение, что положительно влияет на весь процесс перекачки.
8. ТЕХНИКА БЕЗОПАСНОСТИ
В процессе строительства, ремонта, эксплуатации промысловых трубопроводов происходит образование отходов.
Токсичные отходы в виде нефтешламов образуются при зачистке резервуаров, сепараторов и других емкостей, используемых при подготовке нефти. Нефтешламы состоят в основном из тяжелых фракций нефти (асфальтенов, парафинов, масел, смол), сорбированных на частицах песка и глины, продуктов коррозии, отложений минеральных солей, воды.
Нефтезагрязненный грунт образуется в результате аварийных ситуаций (разливов и утечек нефти)
Промасленная ветошь образуется при обслуживании оборудования, ремонтных и других работах, пробоотборе.
Лом и отходы черных металлов образуются в результате списания и ремонта оборудования, подземного и капитального ремонта скважин, капитального и текущего ремонта трубопроводов:
Промасленная ветошь сжигается на установке;
Лом и отходы черных металлов - на площадках временного хранения металлолома.
8.1. Меры безопасности
8.1.1. При изготовлении, монтаже и эксплуатации трубопроводов из ГПМТ должны соблюдаться правила безопасности и охраны труда, установленные РД 08-200-98 «Правила безопасности в нефтяной и газовой промышленности» и СНиП III-4-80 «Техника безопасности в строительстве».
8.1.2.Трубы из полиэтилена относят к 4 классу опасности по ГОСТ 12.1.005. Трубы относят к группе «горючие» по ГОСТ 12.1.044, температура воспламенения не ниже 300°С.
Средства пожаротушения: распыленная вода, двуокись углерода, пена, огнетушащий порошок ПФ, песок, кошма. Тушить пожар необходимо в противогазах марки В по ГОСТ 12.4.121.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9